ps_optimizer.py 9.4 KB
Newer Older
Z
ziyoujiyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from paddle import fluid
import paddle.distributed.passes
from .meta_optimizer_base import MetaOptimizerBase
from paddle.fluid import core
import subprocess
import re
import os
import platform
from paddle.distributed.ps.utils.public import *
from paddle.distributed.passes import PassContext
from ..base.private_helper_function import wait_server_ready
from paddle.distributed.ps.utils.ps_factory import PsProgramBuilderFactory


class ParameterServerOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(ParameterServerOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(ParameterServerOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)

40 41 42 43 44
    def _set_origin_programs(self, losses):
        self.origin_main_programs = []
        for loss in losses:
            self.origin_main_programs.append(loss.block.program)

Z
ziyoujiyi 已提交
45
    def _init_ps_pass_context(self, loss, startup_program):
46
        self.pass_ctx = PassContext()
Z
ziyoujiyi 已提交
47
        attrs = {}
Z
ziyoujiyi 已提交
48
        # trainer
Z
ziyoujiyi 已提交
49
        attrs["env"] = get_dist_env()
Z
ziyoujiyi 已提交
50

Z
ziyoujiyi 已提交
51 52 53 54
        attrs['loss'] = loss
        attrs['min_block_size'] = 81920
        attrs['origin_main_program'] = loss.block.program
        attrs['origin_startup_program'] = startup_program
55 56

        attrs['origin_main_programs'] = self.origin_main_programs
Z
ziyoujiyi 已提交
57

Z
ziyoujiyi 已提交
58 59
        attrs['cloned_main'] = attrs['origin_main_program'].clone()
        attrs['cloned_startup'] = attrs['origin_startup_program'].clone()
Z
ziyoujiyi 已提交
60

Z
ziyoujiyi 已提交
61
        attrs['user_defined_strategy'] = self.user_defined_strategy
Z
ziyoujiyi 已提交
62
        attrs['valid_strategy'] = self.user_defined_strategy
Z
ziyoujiyi 已提交
63 64
        attrs['trainer'] = TrainerRuntimeConfig(self.user_defined_strategy)
        attrs['ps_mode'] = attrs['trainer'].mode
65
        logger.info("ps_mode: {}".format(attrs['ps_mode']))
Z
ziyoujiyi 已提交
66 67
        attrs['role_maker'] = self.role_maker
        attrs[
Z
ziyoujiyi 已提交
68
            'is_heter_ps_mode'] = self.role_maker._is_heter_parameter_server_mode
Z
ziyoujiyi 已提交
69 70 71
        attrs['is_worker'] = self.role_maker._is_worker()
        attrs['is_server'] = self.role_maker._is_server()
        attrs['is_heter_worker'] = self.role_maker._is_heter_worker()
72 73
        logger.info("this process is heter? {}".format(attrs[
            'is_heter_worker']))
Z
ziyoujiyi 已提交
74
        attrs['use_ps_gpu'] = self.user_defined_strategy.a_sync_configs[
Z
ziyoujiyi 已提交
75
            "use_ps_gpu"]
Z
ziyoujiyi 已提交
76 77 78 79 80 81 82
        attrs['lr_decay_steps'] = self.user_defined_strategy.a_sync_configs[
            "lr_decay_steps"]
        attrs['k_steps'] = self.user_defined_strategy.a_sync_configs["k_steps"]
        attrs['launch_barrier'] = self.user_defined_strategy.a_sync_configs[
            "launch_barrier"]

        attrs['launch_barrier_flag'] = int(
Z
ziyoujiyi 已提交
83 84
            os.getenv("FLAGS_LAUNCH_BARRIER", "1"))

Z
ziyoujiyi 已提交
85
        build_var_distributed(attrs)
Z
ziyoujiyi 已提交
86 87

        # server 
Z
ziyoujiyi 已提交
88 89 90
        attrs['_main_server'] = fluid.Program()
        attrs['_startup_server'] = fluid.Program()
        attrs['tensor_table'] = {}
Z
ziyoujiyi 已提交
91

Z
ziyoujiyi 已提交
92
        self.pass_ctx._attrs = attrs
Z
ziyoujiyi 已提交
93 94 95 96 97

    def _is_graph_out(self):
        return False

    def _can_apply(self):
98
        if self.role_maker._is_collective:
Z
ziyoujiyi 已提交
99
            return False
100 101 102

        k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
        return True if k_steps >= 0 else False
Z
ziyoujiyi 已提交
103 104 105 106 107 108 109 110 111 112

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        self.inner_opt.minimize(loss, startup_program, parameter_list,
                                no_grad_set)
        if startup_program == None:
            startup_program = paddle.static.default_startup_program()
113 114 115
        print("program after inner optimizer minimize:",
              str(loss.block.program))
        self._set_origin_programs([loss])
Z
ziyoujiyi 已提交
116 117 118 119 120 121
        self._init_ps_pass_context(loss, startup_program)
        ps_builder = PsProgramBuilderFactory()._create_ps_program_builder(
            self.pass_ctx)
        ps_builder._build_programs()
        return None, None

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    def minimize_losses_impl(self,
                             losses,
                             startup_program=None,
                             parameter_list=None,
                             no_grad_set=None):
        if parameter_list is None:
            parameter_list = [None] * len(losses)
        for idx, loss in enumerate(losses):
            startup_prog = startup_program[idx]
            parameters = parameter_list[idx]
            self.inner_opt.minimize(loss, startup_prog, parameters, no_grad_set)
        self._set_origin_programs(losses)
        for idx, loss in enumerate(losses):
            print("ps_optimizer idx loss:", idx, loss)
            startup_prog = startup_program[idx]
            self._init_ps_pass_context(loss, startup_prog)
            ps_builder = PsProgramBuilderFactory()._create_ps_program_builder(
                self.pass_ctx)
            ps_builder._build_programs()
            startup_program[idx] = self.pass_ctx._attrs['cloned_startup']
        return None, None

Z
ziyoujiyi 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    def _can_apply_geo(self, program):
        def get_sys_free_mem():
            plat = platform.system()
            if platform.system() == "Darwin":
                vm = subprocess.Popen(
                    ['vm_stat'], stdout=subprocess.PIPE).communicate()[0]
                # Process vm_stat
                vmLines = vm.split('\n')
                sep = re.compile(r':[\s]+')
                vmStats = {}
                for row in range(1, len(vmLines) - 2):
                    rowText = vmLines[row].strip()
                    rowElements = sep.split(rowText)
                    vmStats[(rowElements[0]
                             )] = int(rowElements[1].strip(r'\.')) * 4096
                return vmStats["Pages free"]
            elif platform.system() == "Linux":
                mems = {}
                with open('/proc/meminfo', 'rb') as f:
                    for line in f:
                        fields = line.split()
                        mems[fields[0]] = int(fields[1]) * 1024
                free = mems[b'MemFree:']
                return free
            else:
                raise ValueError(
                    "%s platform is unsupported is parameter server optimizer" %
                    (platform.system()))

        if not isinstance(self.inner_opt, fluid.optimizer.SGDOptimizer):
            return False

        free = get_sys_free_mem()
        processed_var_names = set(["@EMPTY@"])
        param_memory_size = 0
        for varname in program.global_block().vars:
            var = program.global_block().vars[varname]
            if not var.persistable or var.desc.type(
            ) != core.VarDesc.VarType.LOD_TENSOR:
                continue
            set_var_lod_type(var)
            param_memory_size += get_var_mem_size(var)
            processed_var_names.add(varname)

        upper_mem_use = param_memory_size * 5.0

        program_tmp_vars = dict()
        eval_batch_size = 1024
        for op in program.global_block().ops:
            for var_name in op.output_arg_names:
                if var_name in processed_var_names:
                    continue
                processed_var_names.add(var_name)
                var = program.global_block().vars[var_name]

                if var.desc.type() != core.VarDesc.VarType.LOD_TENSOR:
                    continue

                data_count = 1
                neg_dim_count = 0
                for x in var.shape:
                    if x < 0:
                        if neg_dim_count >= 1:
                            raise ValueError(
                                "Var %s has more than one negative dim." %
                                (var_name))
                        neg_dim_count += 1
                        data_count *= (-x)
                    else:
                        data_count *= x
                program_tmp_vars[var_name] = (
                    data_count, neg_dim_count,
                    vars_metatools.dtype_to_size[var.dtype])

        for varname in program_tmp_vars:
            data_count, neg_dim_count, type_size = program_tmp_vars[varname]
            if neg_dim_count == 1:
                data_count *= eval_batch_size
            var_memory = data_count * type_size
            upper_mem_use += var_memory

        if upper_mem_use < free:
            return True
        else:
            return False

    def _enable_strategy(self, dist_strategy, context):
        if dist_strategy.a_sync_configs["k_steps"] >= 0:
            return
        dist_strategy.a_sync = True
        is_geo = self._can_apply_geo(context["origin_main_program"])
        dist_strategy.a_sync_configs["k_steps"] = 800 if is_geo else 0

    def _disable_strategy(self, dist_strategy):
        dist_strategy.a_sync = False
        dist_strategy.a_sync_configs["k_steps"] = -1