search.py 43.0 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import numpy as np
Z
zhiboniu 已提交
15
import paddle
16
from ..framework import LayerHelper, convert_np_dtype_to_dtype_
C
Chengmo 已提交
17
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
18
from ..fluid import layers
19 20
from ..framework import core, in_dygraph_mode, _non_static_mode
from ..fluid.framework import _in_legacy_dygraph
21 22
from paddle.common_ops_import import Variable
from paddle.common_ops_import import VarDesc
23
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
24
from .logic import logical_not
25

26
# TODO: define searching & indexing functions of a tensor
27 28
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
29

30 31
__all__ = []

32

33 34
def argsort(x, axis=-1, descending=False, name=None):
    """
35
    Sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
36 37 38 39 40 41

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
C
Chen Long 已提交
42
            as axis+R. Default is -1.
43 44 45
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
46
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
47 48 49 50 51 52

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
李灿 已提交
53

54
        .. code-block:: python
李灿 已提交
55

56
            import paddle
57

58 59 60 61 62
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
63
                                   [1,7,0,6]]],
64
                                dtype='float32')
C
Chen Long 已提交
65 66 67
            out1 = paddle.argsort(x, axis=-1)
            out2 = paddle.argsort(x, axis=0)
            out3 = paddle.argsort(x, axis=1)
68

N
Noel 已提交
69
            print(out1)
W
wawltor 已提交
70 71 72
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
73
            # [[1 3 2 0]
W
wawltor 已提交
74 75
            #  [0 1 2 3]
            #  [2 0 3 1]]]
76

N
Noel 已提交
77
            print(out2)
W
wawltor 已提交
78 79 80 81 82 83
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
84

N
Noel 已提交
85
            print(out3)
W
wawltor 已提交
86 87 88 89 90 91
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
92
    """
H
hong 已提交
93
    if in_dygraph_mode():
94
        _, ids = _C_ops.argsort(x, axis, descending)
H
hong 已提交
95 96 97
        return ids

    if _in_legacy_dygraph():
98 99
        _, ids = _legacy_C_ops.argsort(x, 'axis', axis, 'descending',
                                       descending)
100 101 102 103 104 105
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
106 107 108 109 110 111 112 113 114 115 116 117 118 119
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=True)
    ids = helper.create_variable_for_type_inference(VarDesc.VarType.INT64,
                                                    stop_gradient=True)
    helper.append_op(type='argsort',
                     inputs={'X': x},
                     outputs={
                         'Out': out,
                         'Indices': ids
                     },
                     attrs={
                         'axis': axis,
                         'descending': descending
                     })
120 121 122
    return ids


123
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
124
    """
125
    Computes the indices of the max elements of the input tensor's
126 127 128
    element along the provided axis.

    Args:
W
wawltor 已提交
129
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
130 131
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
132 133
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
134
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
135
        dtype(str|np.dtype, optional): Data type of the output tensor which can
136
                    be int32, int64. The default value is ``int64`` , and it will
137
                    return the int64 indices.
138
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
139 140

    Returns:
141
        Tensor, return the tensor of int32 if set :attr:`dtype` is int32, otherwise return the tensor of int64.
142 143 144 145

    Examples:
        .. code-block:: python

W
wawltor 已提交
146
            import paddle
147

148 149 150
            x = paddle.to_tensor([[5,8,9,5],
                                 [0,0,1,7],
                                 [6,9,2,4]])
W
wawltor 已提交
151
            out1 = paddle.argmax(x)
N
Noel 已提交
152
            print(out1) # 2
153
            out2 = paddle.argmax(x, axis=0)
154
            print(out2)
155
            # [2, 2, 0, 1]
W
wawltor 已提交
156
            out3 = paddle.argmax(x, axis=-1)
157
            print(out3)
158 159 160 161
            # [2, 3, 1]
            out4 = paddle.argmax(x, axis=0, keepdim=True)
            print(out4)
            # [[2, 2, 0, 1]]
162
    """
163
    if axis is not None and not isinstance(axis, (int, Variable)):
164
        raise TypeError(
165
            "The type of 'axis'  must be int or Tensor or None in argmax, but received %s."
166
            % (type(axis)))
167

168 169 170 171
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
172

173
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
174 175 176 177 178
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

H
hong 已提交
179
    if in_dygraph_mode():
180
        return _C_ops.argmax(x, axis, keepdim, flatten, var_dtype)
H
hong 已提交
181
    if _in_legacy_dygraph():
182 183
        out = _legacy_C_ops.arg_max(x, 'axis', axis, 'dtype', var_dtype,
                                    'keepdims', keepdim, 'flatten', flatten)
W
wawltor 已提交
184 185 186 187 188 189
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
190
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
191
    attrs = {}
W
wawltor 已提交
192 193 194 195
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
196
    attrs['dtype'] = var_dtype
197 198 199 200
    helper.append_op(type='arg_max',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs=attrs)
W
wawltor 已提交
201 202 203 204
    out.stop_gradient = True
    return out


205
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
206
    """
207
    Computes the indices of the min elements of the input tensor's
W
wawltor 已提交
208 209 210 211 212 213 214 215
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
216
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
217
        dtype(str, optional): Data type of the output tensor which can
218
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
219
                    return the int64 indices.
220
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
221

W
wawltor 已提交
222
    Returns:
223
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`.
W
wawltor 已提交
224 225 226

    Examples:
        .. code-block:: python
227

W
wawltor 已提交
228 229
            import paddle

230 231 232
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
233
            out1 = paddle.argmin(x)
N
Noel 已提交
234
            print(out1) # 4
235
            out2 = paddle.argmin(x, axis=0)
236
            print(out2)
237
            # [1, 1, 1, 2]
W
wawltor 已提交
238
            out3 = paddle.argmin(x, axis=-1)
239
            print(out3)
240 241 242 243
            # [0, 0, 2]
            out4 = paddle.argmin(x, axis=0, keepdim=True)
            print(out4)
            # [[1, 1, 1, 2]]
W
wawltor 已提交
244
    """
245
    if axis is not None and not isinstance(axis, (int, Variable)):
246
        raise TypeError(
247
            "The type of 'axis'  must be int or Tensor or None in argmin, but received %s."
248
            % (type(axis)))
249

250 251 252 253
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
254

255
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
256
    flatten = False
257
    if axis is None:
W
wawltor 已提交
258 259 260
        flatten = True
        axis = 0

H
hong 已提交
261
    if in_dygraph_mode():
262
        return _C_ops.argmin(x, axis, keepdim, flatten, var_dtype)
H
hong 已提交
263
    if _in_legacy_dygraph():
264 265
        out = _legacy_C_ops.arg_min(x, 'axis', axis, 'dtype', var_dtype,
                                    'keepdims', keepdim, 'flatten', flatten)
W
wawltor 已提交
266 267 268 269 270 271
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
272
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
273
    out = helper.create_variable_for_type_inference(var_dtype)
274
    attrs = {}
W
wawltor 已提交
275
    attrs['keepdims'] = keepdim
276
    attrs['axis'] = axis
W
wawltor 已提交
277
    attrs['flatten'] = flatten
278
    attrs['dtype'] = var_dtype
279 280 281 282
    helper.append_op(type='arg_min',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs=attrs)
283 284
    out.stop_gradient = True
    return out
285 286


287
def index_select(x, index, axis=0, name=None):
288
    """
S
swtkiwi 已提交
289

290 291 292 293
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using
    the entries in ``index`` which is a Tensor. The returned tensor has the same number
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor.
C
Chengmo 已提交
294

295
    Args:
296 297 298
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
299
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
300 301

    Returns:
302
        Tensor: A Tensor with same data type as ``x``.
303

304 305
    Examples:
        .. code-block:: python
306

307 308
            import paddle

309 310 311 312
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
313 314 315 316 317 318 319 320
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
321
    """
322

F
From00 已提交
323
    if in_dygraph_mode():
324
        return _C_ops.index_select(x, index, axis)
F
From00 已提交
325 326

    if _in_legacy_dygraph():
327
        return _legacy_C_ops.index_select(x, index, 'dim', axis)
328

329 330 331
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
332
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
333
                             'paddle.tensor.search.index_select')
334

335
    out = helper.create_variable_for_type_inference(x.dtype)
336

337 338 339 340 341 342 343
    helper.append_op(type='index_select',
                     inputs={
                         'X': x,
                         'Index': index
                     },
                     outputs={'Out': out},
                     attrs={'dim': axis})
344 345 346
    return out


347
def nonzero(x, as_tuple=False):
348
    """
349 350 351 352 353 354
    Return a tensor containing the indices of all non-zero elements of the `input`
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension
    in `input`, each containing the indices (in that dimension) of all non-zero elements
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get
355
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
356

357
    Args:
358
        x (Tensor): The input tensor variable.
359 360 361
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
362
        Tensor. The data type is int64.
363 364

    Examples:
365

N
Noel 已提交
366
        .. code-block:: python
李灿 已提交
367

368
            import paddle
369 370

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
N
Noel 已提交
371 372
                                   [0.0, 2.0, 0.0],
                                   [0.0, 0.0, 3.0]])
373 374
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            out_z1 = paddle.nonzero(x1)
N
Noel 已提交
375
            print(out_z1)
376 377 378 379 380
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
N
Noel 已提交
381
                print(out)
382 383 384 385 386 387 388
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
N
Noel 已提交
389
            print(out_z2)
390 391 392 393
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
N
Noel 已提交
394
                print(out)
395 396
            #[[1]
            # [3]]
N
Noel 已提交
397

398 399
    """
    list_out = []
400
    shape = x.shape
401 402
    rank = len(shape)

403
    if in_dygraph_mode():
W
wanghuancoder 已提交
404
        outs = _C_ops.where_index(x)
405 406
    elif paddle.in_dynamic_mode():
        outs = _legacy_C_ops.where_index(x)
407
    else:
408 409 410 411 412
        helper = LayerHelper("where_index", **locals())

        outs = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.INT64)

413 414 415
        helper.append_op(type='where_index',
                         inputs={'Condition': x},
                         outputs={'Out': [outs]})
416 417 418 419 420 421 422 423

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
424
                paddle.slice(outs, axes=[1], starts=[i], ends=[i + 1]))
425 426 427
        return tuple(list_out)


428
def sort(x, axis=-1, descending=False, name=None):
429
    """
S
swtkiwi 已提交
430

431
    Sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
432

433
    Args:
434
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
435 436 437
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
438
            as axis+R. Default is -1.
439 440 441
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
442
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
443

444
    Returns:
W
wawltor 已提交
445
        Tensor: sorted tensor(with the same shape and data type as ``x``).
446
    Examples:
N
Noel 已提交
447

448
        .. code-block:: python
N
Noel 已提交
449

450
            import paddle
N
Noel 已提交
451

452 453 454 455 456
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
457
                                   [1,7,0,6]]],
458
                                 dtype='float32')
459 460 461
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
N
Noel 已提交
462
            print(out1)
W
wawltor 已提交
463 464 465 466 467 468
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
N
Noel 已提交
469
            print(out2)
470
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
471 472 473 474 475
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
N
Noel 已提交
476
            print(out3)
477
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
478 479 480 481 482
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
483
    """
484
    if in_dygraph_mode():
485
        outs, _ = _C_ops.argsort(x, axis, descending)
486 487 488
        return outs

    if _in_legacy_dygraph():
489 490
        outs, _ = _legacy_C_ops.argsort(x, 'axis', axis, 'descending',
                                        descending)
491
        return outs
492
    helper = LayerHelper("sort", **locals())
493 494 495 496 497 498 499 500 501 502 503 504 505 506
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=False)
    ids = helper.create_variable_for_type_inference(VarDesc.VarType.INT64,
                                                    stop_gradient=True)
    helper.append_op(type='argsort',
                     inputs={'X': x},
                     outputs={
                         'Out': out,
                         'Indices': ids
                     },
                     attrs={
                         'axis': axis,
                         'descending': descending
                     })
W
wawltor 已提交
507
    return out
C
Chengmo 已提交
508 509


510 511
def mode(x, axis=-1, keepdim=False, name=None):
    """
512
    Used to find values and indices of the modes at the optional axis.
513 514 515 516 517 518 519

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
520
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
521 522 523 524 525 526 527 528 529

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle
530

531 532 533 534 535 536 537 538
           tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32)
           res = paddle.mode(tensor, 2)
           print(res)
           # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
           #   [[2., 3.],
           #    [5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
           #   [[1, 1],
           #    [1, 0]]))
539

540
    """
541
    if in_dygraph_mode():
542
        return _C_ops.mode(x, axis, keepdim)
543
    if _in_legacy_dygraph():
544
        return _legacy_C_ops.mode(x, "axis", axis, "keepdim", keepdim)
545 546 547 548 549 550 551 552 553 554

    helper = LayerHelper("mode", **locals())
    inputs = {"X": [x]}
    attrs = {}
    attrs['axis'] = axis
    attrs['keepdim'] = keepdim

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

555 556 557 558 559 560 561
    helper.append_op(type="mode",
                     inputs=inputs,
                     outputs={
                         "Out": [values],
                         "Indices": [indices]
                     },
                     attrs=attrs)
562 563 564 565
    indices.stop_gradient = True
    return values, indices


R
ronnywang 已提交
566
def where(condition, x=None, y=None, name=None):
567
    r"""
568
    Return a Tensor of elements selected from either :attr:`x` or :attr:`y` according to corresponding elements of :attr:`condition`. Concretely,
R
ronnywang 已提交
569

570
    .. math::
C
Chengmo 已提交
571

572 573 574 575 576
        out_i =
        \begin{cases}
        x_i, & \text{if}  \ condition_i \  \text{is} \ True \\
        y_i, & \text{if}  \ condition_i \  \text{is} \ False \\
        \end{cases}.
C
Chengmo 已提交
577

578 579
    Notes:
        ``numpy.where(condition)`` is identical to ``paddle.nonzero(condition, as_tuple=True)``, please refer to :ref:`api_tensor_search_nonzero`.
580

581
    Args:
582 583 584 585
        condition (Tensor): The condition to choose x or y. When True (nonzero), yield x, otherwise yield y.
        x (Tensor|scalar, optional): A Tensor or scalar to choose when the condition is True with data type of float32, float64, int32 or int64. Either both or neither of x and y should be given.
        y (Tensor|scalar, optional): A Tensor or scalar to choose when the condition is False with data type of float32, float64, int32 or int64. Either both or neither of x and y should be given.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
586

587
    Returns:
588
        Tensor: A Tensor with the same shape as :attr:`condition` and same data type as :attr:`x` and :attr:`y`.
589

590
    Examples:
591

592 593
        .. code-block:: python

594
            import paddle
595

596 597
            x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
            y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
598

599 600 601
            out = paddle.where(x>1, x, y)
            print(out)
            #out: [1.0, 1.0, 3.2, 1.2]
602

603 604 605 606 607
            out = paddle.where(x>1)
            print(out)
            #out: (Tensor(shape=[2, 1], dtype=int64, place=CPUPlace, stop_gradient=True,
            #            [[2],
            #             [3]]),)
608
    """
R
ronnywang 已提交
609
    if np.isscalar(x):
610
        x = paddle.full([1], x, np.array([x]).dtype.name)
R
ronnywang 已提交
611 612

    if np.isscalar(y):
613
        y = paddle.full([1], y, np.array([y]).dtype.name)
R
ronnywang 已提交
614

R
ronnywang 已提交
615 616 617 618 619 620
    if x is None and y is None:
        return nonzero(condition, as_tuple=True)

    if x is None or y is None:
        raise ValueError("either both or neither of x and y should be given")

Z
zhiboniu 已提交
621
    if not paddle.in_dynamic_mode():
622
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
623 624 625 626 627 628
        check_variable_and_dtype(x, 'x',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'where')
        check_variable_and_dtype(y, 'y',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'where')
629

630
    condition_shape = list(condition.shape)
631 632
    x_shape = list(x.shape)
    y_shape = list(y.shape)
633

634
    if x_shape == y_shape and condition_shape == x_shape:
635 636 637 638
        broadcast_condition = condition
        broadcast_x = x
        broadcast_y = y
    else:
Z
zhiboniu 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651
        zeros_like_x = paddle.zeros_like(x)
        zeros_like_y = paddle.zeros_like(y)
        zeros_like_condition = paddle.zeros_like(condition)
        zeros_like_condition = paddle.cast(zeros_like_condition, x.dtype)
        cast_cond = paddle.cast(condition, x.dtype)

        broadcast_zeros = paddle.add(zeros_like_x, zeros_like_y)
        broadcast_zeros = paddle.add(broadcast_zeros, zeros_like_condition)
        broadcast_x = paddle.add(x, broadcast_zeros)
        broadcast_y = paddle.add(y, broadcast_zeros)
        broadcast_condition = paddle.add(cast_cond, broadcast_zeros)
        broadcast_condition = paddle.cast(broadcast_condition, 'bool')

J
Jiabin Yang 已提交
652
    if in_dygraph_mode():
653
        return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
654
    else:
J
Jiabin Yang 已提交
655
        if _in_legacy_dygraph():
656 657
            return _legacy_C_ops.where(broadcast_condition, broadcast_x,
                                       broadcast_y)
J
Jiabin Yang 已提交
658 659 660 661
        else:
            helper = LayerHelper("where", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

662 663 664 665 666 667 668
            helper.append_op(type='where',
                             inputs={
                                 'Condition': broadcast_condition,
                                 'X': broadcast_x,
                                 'Y': broadcast_y
                             },
                             outputs={'Out': [out]})
669

J
Jiabin Yang 已提交
670
            return out
671 672


C
Chengmo 已提交
673 674 675 676
def index_sample(x, index):
    """
    **IndexSample Layer**

677 678
    IndexSample OP returns the element of the specified location of X,
    and the location is specified by Index.
C
Chengmo 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
697
        x (Tensor): The source input tensor with 2-D shape. Supported data type is
C
Chengmo 已提交
698
            int32, int64, float32, float64.
699
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X.
C
Chengmo 已提交
700 701 702
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
703
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
704 705 706 707 708 709

    Examples:

        .. code-block:: python

            import paddle
710 711 712 713 714 715 716 717 718 719 720

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
N
Noel 已提交
721
            print(out_z1)
722 723 724 725 726 727 728 729
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
N
Noel 已提交
730
            print(top_value)
731 732 733 734
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

N
Noel 已提交
735
            print(top_index)
736 737 738 739
            #[[3 2]
            # [3 2]
            # [3 2]]

N
Noel 已提交
740
            print(out_z2)
741 742 743
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
744

C
Chengmo 已提交
745
    """
J
Jiabin Yang 已提交
746
    if in_dygraph_mode():
747
        return _C_ops.index_sample(x, index)
J
Jiabin Yang 已提交
748 749
    else:
        if _in_legacy_dygraph():
750
            return _legacy_C_ops.index_sample(x, index)
J
Jiabin Yang 已提交
751 752 753 754 755 756 757 758 759
        else:
            helper = LayerHelper("index_sample", **locals())
            check_variable_and_dtype(x, 'x',
                                     ['float32', 'float64', 'int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

760 761 762 763 764 765
            helper.append_op(type='index_sample',
                             inputs={
                                 'X': x,
                                 'Index': index
                             },
                             outputs={'Out': out})
J
Jiabin Yang 已提交
766
            return out
767 768 769 770


def masked_select(x, mask, name=None):
    """
C
Chen Long 已提交
771
    Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
772 773 774
    which is a tensor with data type of bool.

    Args:
775
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64.
776
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
777
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
778

779
    Returns:
780
        A 1-D Tensor which is the same data type  as ``x``.
781

782 783 784 785 786
    Examples:

        .. code-block:: python

            import paddle
787 788 789 790 791 792 793

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
794 795 796 797
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

H
hong 已提交
798
    if in_dygraph_mode():
799
        return _C_ops.masked_select(x, mask)
H
hong 已提交
800 801

    if _in_legacy_dygraph():
802
        return _legacy_C_ops.masked_select(x, mask)
803 804 805 806 807 808 809

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
810 811 812 813 814 815
    helper.append_op(type='masked_select',
                     inputs={
                         'X': x,
                         'Mask': mask
                     },
                     outputs={'Y': out})
816
    return out
W
wawltor 已提交
817 818 819 820


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
821
    Return values and indices of the k largest or smallest at the optional axis.
W
wawltor 已提交
822 823 824 825 826 827 828 829 830 831 832 833
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
834
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value.
W
wawltor 已提交
835 836 837 838 839 840 841 842
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python
843

844
            import paddle
W
wawltor 已提交
845

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
            data_1 = paddle.to_tensor([1, 4, 5, 7])
            value_1, indices_1 = paddle.topk(data_1, k=1)
            print(value_1) # [7]
            print(indices_1) # [3]

            data_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
            value_2, indices_2 = paddle.topk(data_2, k=1)
            print(value_2) # [[7], [6]]
            print(indices_2) # [[3], [1]]

            value_3, indices_3 = paddle.topk(data_2, k=1, axis=-1)
            print(value_3) # [[7], [6]]
            print(indices_3) # [[3], [1]]

            value_4, indices_4 = paddle.topk(data_2, k=1, axis=0)
            print(value_4) # [[2, 6, 5, 7]]
            print(indices_4) # [[1, 1, 0, 0]]
W
wawltor 已提交
863 864 865


    """
H
hong 已提交
866

H
hong 已提交
867 868 869
    if in_dygraph_mode():
        if axis == None:
            axis = -1
870
        out, indices = _C_ops.top_k(x, k, axis, largest, sorted)
H
hong 已提交
871 872
        return out, indices

H
hong 已提交
873
    if _non_static_mode():
W
wawltor 已提交
874
        if axis is None:
875 876
            out, indices = _legacy_C_ops.top_k_v2(x, 'k', int(k), 'largest',
                                                  largest, 'sorted', sorted)
W
wawltor 已提交
877
        else:
878 879 880
            out, indices = _legacy_C_ops.top_k_v2(x, 'k', int(k), 'axis', axis,
                                                  'largest', largest, 'sorted',
                                                  sorted)
W
wawltor 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

898 899 900 901 902 903 904
    helper.append_op(type="top_k_v2",
                     inputs=inputs,
                     outputs={
                         "Out": [values],
                         "Indices": [indices]
                     },
                     attrs=attrs)
W
wawltor 已提交
905 906
    indices.stop_gradient = True
    return values, indices
Y
Yanxing Shi 已提交
907 908


909 910 911 912 913 914
def bucketize(x, sorted_sequence, out_int32=False, right=False, name=None):
    """
    This API is used to find the index of the corresponding 1D tensor `sorted_sequence` in the innermost dimension based on the given `x`.

    Args:
        x(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
915
        sorted_sequence(Tensor): An input 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension.
916 917
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `x`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
918
                               The default value is False and it shows the lower bounds.
919
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
920

921
    Returns:
922 923
        Tensor(the same sizes of the `x`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.

924 925 926
    Examples:

        .. code-block:: python
927

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
            import paddle

            sorted_sequence = paddle.to_tensor([2, 4, 8, 16], dtype='int32')
            x = paddle.to_tensor([[0, 8, 4, 16], [-1, 2, 8, 4]], dtype='int32')
            out1 = paddle.bucketize(x, sorted_sequence)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CPUPlace, stop_gradient=True,
            #        [[0, 2, 1, 3],
            #         [0, 0, 2, 1]])
            out2 = paddle.bucketize(x, sorted_sequence, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CPUPlace, stop_gradient=True,
            #        [[0, 3, 2, 4],
            #         [0, 1, 3, 2]])
            out3 = x.bucketize(sorted_sequence)
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CPUPlace, stop_gradient=True,
            #        [[0, 2, 1, 3],
            #         [0, 0, 2, 1]])
            out4 = x.bucketize(sorted_sequence, right=True)
            print(out4)
            # Tensor(shape=[2, 4], dtype=int64, place=CPUPlace, stop_gradient=True,
            #        [[0, 3, 2, 4],
            #         [0, 1, 3, 2]])
952

953 954 955 956 957 958 959 960 961 962 963
    """
    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    if sorted_sequence.dim() != 1:
        raise ValueError(
            f"sorted_sequence tensor must be 1 dimension, but got dim {sorted_sequence.dim()}"
        )
    return searchsorted(sorted_sequence, x, out_int32, right, name)


Y
Yanxing Shi 已提交
964 965 966 967 968 969
def searchsorted(sorted_sequence,
                 values,
                 out_int32=False,
                 right=False,
                 name=None):
    """
970
    Find the index of the corresponding `sorted_sequence` in the innermost dimension based on the given `values`.
Y
Yanxing Shi 已提交
971 972

    Args:
973
        sorted_sequence(Tensor): An input N-D or 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension.
Y
Yanxing Shi 已提交
974 975 976
        values(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `values`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
977
                               The default value is False and it shows the lower bounds.
978
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
979

Y
Yanxing Shi 已提交
980
    Returns:
981 982
        Tensor(the same sizes of the `values`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.

Y
Yanxing Shi 已提交
983 984 985
    Examples:

        .. code-block:: python
986

Y
Yanxing Shi 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
            import paddle

            sorted_sequence = paddle.to_tensor([[1, 3, 5, 7, 9, 11],
                                                [2, 4, 6, 8, 10, 12]], dtype='int32')
            values = paddle.to_tensor([[3, 6, 9, 10], [3, 6, 9, 10]], dtype='int32')
            out1 = paddle.searchsorted(sorted_sequence, values)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 2, 4, 4]])
            out2 = paddle.searchsorted(sorted_sequence, values, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2, 3, 5, 5],
            #         [1, 3, 4, 5]])
            sorted_sequence_1d = paddle.to_tensor([1, 3, 5, 7, 9, 11, 13])
1003
            out3 = paddle.searchsorted(sorted_sequence_1d, values)
Y
Yanxing Shi 已提交
1004 1005 1006 1007
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 3, 4, 5]])
1008

Y
Yanxing Shi 已提交
1009
    """
F
From00 已提交
1010
    if in_dygraph_mode():
1011
        return _C_ops.searchsorted(sorted_sequence, values, out_int32, right)
Y
Yanxing Shi 已提交
1012

F
From00 已提交
1013
    if _in_legacy_dygraph():
1014 1015
        return _legacy_C_ops.searchsorted(sorted_sequence, values, "out_int32",
                                          out_int32, "right", right)
Y
Yanxing Shi 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    check_variable_and_dtype(values, 'Values',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')

    helper = LayerHelper('searchsorted', **locals())
    out_type = 'int32' if out_int32 else 'int64'
    out = helper.create_variable_for_type_inference(dtype=out_type)
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    helper.append_op(type='searchsorted',
                     inputs={
                         'SortedSequence': sorted_sequence,
                         "Values": values
                     },
                     outputs={'Out': out},
                     attrs={
                         "out_int32": out_int32,
                         "right": right
                     })
Y
Yanxing Shi 已提交
1037 1038

    return out
1039 1040 1041 1042


def kthvalue(x, k, axis=None, keepdim=False, name=None):
    """
1043
    Find values and indices of the k-th smallest at the axis.
1044 1045 1046 1047 1048 1049 1050 1051

    Args:
        x(Tensor): A N-D Tensor with type float32, float64, int32, int64.
        k(int): The k for the k-th smallest number to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. The default is None. And if the axis is None, it will computed as -1 by default.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
1052
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1053 1054 1055

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
1056

1057 1058 1059
    Examples:

        .. code-block:: python
1060

1061
            import paddle
1062

1063 1064 1065 1066 1067 1068 1069 1070
            x = paddle.randn((2,3,2))
            # Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[[ 0.22954939, -0.01296274],
            #         [ 1.17135799, -0.34493217],
            #         [-0.19550551, -0.17573971]],
            #
            #        [[ 0.15104349, -0.93965352],
            #         [ 0.14745511,  0.98209465],
1071 1072
            #         [ 0.10732264, -0.55859774]]])
            y = paddle.kthvalue(x, 2, 1)
1073 1074 1075 1076 1077 1078
            # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            # [[ 0.22954939, -0.17573971],
            #  [ 0.14745511, -0.55859774]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #  [[0, 2],
            #  [1, 2]]))
    """
1079
    if _non_static_mode():
1080
        if axis is not None:
1081
            if _in_legacy_dygraph():
1082 1083 1084
                return _legacy_C_ops.kthvalue(x, 'k', k, "axis", axis,
                                              "keepdim", keepdim)
            return _C_ops.kthvalue(x, k, axis, keepdim)
1085
        else:
1086
            if _in_legacy_dygraph():
1087 1088
                return _legacy_C_ops.kthvalue(x, 'k', k, "keepdim", keepdim)
            return _C_ops.kthvalue(x, k, -1, keepdim)
1089 1090 1091 1092 1093 1094 1095 1096 1097

    helper = LayerHelper("kthvalue", **locals())
    inputs = {"X": [x]}
    attrs = {'k': k}
    if axis is not None:
        attrs['axis'] = axis
    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

1098 1099 1100 1101 1102 1103 1104
    helper.append_op(type="kthvalue",
                     inputs=inputs,
                     outputs={
                         "Out": [values],
                         "Indices": [indices]
                     },
                     attrs=attrs)
1105 1106
    indices.stop_gradient = True
    return values, indices