gpu_primitives.h 19.0 KB
Newer Older
W
Wang Xin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#endif
#include <stdio.h>

#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"

template <typename T>
using complex = phi::dtype::complex<T>;

using float16 = phi::dtype::float16;
using bfloat16 = phi::dtype::bfloat16;

namespace phi {

#define CUDA_ATOMIC_WRAPPER(op, T) \
  __device__ __forceinline__ T CudaAtomic##op(T *address, const T val)

#define USE_CUDA_ATOMIC(op, T) \
  CUDA_ATOMIC_WRAPPER(op, T) { return atomic##op(address, val); }

// Default thread count per block(or block size).
// TODO(typhoonzero): need to benchmark against setting this value
//                    to 1024.
constexpr int PADDLE_CUDA_NUM_THREADS = 512;

// For atomicAdd.
USE_CUDA_ATOMIC(Add, float);
USE_CUDA_ATOMIC(Add, int);
USE_CUDA_ATOMIC(Add, unsigned int);
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
USE_CUDA_ATOMIC(Add, unsigned long long int);  // NOLINT

CUDA_ATOMIC_WRAPPER(Add, int64_t) {
  // Here, we check long long int must be int64_t.
  static_assert(sizeof(int64_t) == sizeof(long long int),  // NOLINT
                "long long should be int64");
  return CudaAtomicAdd(
      reinterpret_cast<unsigned long long int *>(address),  // NOLINT
      static_cast<unsigned long long int>(val));            // NOLINT
}

#if defined(__HIPCC__) || (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 600)
USE_CUDA_ATOMIC(Add, double);
#else
CUDA_ATOMIC_WRAPPER(Add, double) {
  unsigned long long int *address_as_ull =                  // NOLINT
      reinterpret_cast<unsigned long long int *>(address);  // NOLINT
  unsigned long long int old = *address_as_ull, assumed;    // NOLINT

  do {
    assumed = old;
    old = atomicCAS(address_as_ull,
                    assumed,
                    __double_as_longlong(val + __longlong_as_double(assumed)));

    // Note: uses integer comparison to avoid hang in case of NaN
  } while (assumed != old);

  return __longlong_as_double(old);
}
#endif

#ifdef PADDLE_CUDA_FP16
// NOTE(dzhwinter): cuda do not have atomicCAS for half.
// Just use the half address as a unsigned value address and
// do the atomicCAS. According to the value store at high 16 bits
// or low 16 bits, then do a different sum and CAS.
// Given most warp-threads will failed on the atomicCAS, so this
// implemented should be avoided in high concurrency. It's will be
// slower than the way convert value into 32bits and do a full atomicCAS.

// convert the value into float and do the add arithmetic.
// then store the result into a uint32.
inline static __device__ uint32_t add_to_low_half(uint32_t val, float x) {
  float16 low_half;
  // the float16 in lower 16bits
  low_half.x = static_cast<uint16_t>(val & 0xFFFFu);
  low_half = static_cast<float16>(static_cast<float>(low_half) + x);
  return (val & 0xFFFF0000u) | low_half.x;
}

inline static __device__ uint32_t add_to_high_half(uint32_t val, float x) {
  float16 high_half;
  // the float16 in higher 16bits
  high_half.x = static_cast<uint16_t>(val >> 16);
  high_half = static_cast<float16>(static_cast<float>(high_half) + x);
  return (val & 0xFFFFu) | (static_cast<uint32_t>(high_half.x) << 16);
}

#if CUDA_VERSION >= 10000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
static __device__ __forceinline__ float16 CUDAFP16ToPDFP16(__half x) {
  return *reinterpret_cast<float16 *>(&x);
}

static __device__ __forceinline__ __half PDFP16ToCUDAFP16(float16 x) {
  return *reinterpret_cast<__half *>(&x);
}

CUDA_ATOMIC_WRAPPER(Add, float16) {
  return CUDAFP16ToPDFP16(
      atomicAdd(reinterpret_cast<__half *>(address), PDFP16ToCUDAFP16(val)));
}
#else
CUDA_ATOMIC_WRAPPER(Add, float16) {
  // concrete packed float16 value may exsits in lower or higher 16bits
  // of the 32bits address.
  uint32_t *address_as_ui = reinterpret_cast<uint32_t *>(
      reinterpret_cast<char *>(address) -
      (reinterpret_cast<uintptr_t>(address) & 0x02));
  float val_f = static_cast<float>(val);
  uint32_t old = *address_as_ui;
  uint32_t sum;
  uint32_t newval;
  uint32_t assumed;
  if (((uintptr_t)address & 0x02) == 0) {
    // the float16 value stay at lower 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, add_to_low_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old & 0xFFFFu;
    return ret;
  } else {
    // the float16 value stay at higher 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, add_to_high_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old >> 16;
    return ret;
  }
}
#endif

// The performance of "atomicAdd(half* )" is bad, but for "atomicAdd(half2* )"
// is good. So for fp16 type, we can use "atomicAdd(half2* )" to speed up.
template <
    typename T,
    typename std::enable_if<std::is_same<float16, T>::value>::type * = nullptr>
__device__ __forceinline__ void fastAtomicAdd(T *tensor,
                                              size_t index,
                                              const size_t numel,
                                              T value) {
#if ((CUDA_VERSION < 10000) || \
     (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 700)))
  CudaAtomicAdd(reinterpret_cast<float16 *>(tensor) + index,
                static_cast<float16>(value));
#else
  // whether the address is 32-byte aligned.
  __half *target_addr = reinterpret_cast<__half *>(tensor + index);
  bool aligned_half2 =
      (reinterpret_cast<std::uintptr_t>(target_addr) % sizeof(__half2) == 0);

  if (aligned_half2 && index < (numel - 1)) {
    __half2 value2;
    value2.x = *reinterpret_cast<__half *>(&value);
    value2.y = __int2half_rz(0);
    atomicAdd(reinterpret_cast<__half2 *>(target_addr), value2);

  } else if (!aligned_half2 && index > 0) {
    __half2 value2;
    value2.x = __int2half_rz(0);
    value2.y = *reinterpret_cast<__half *>(&value);
    atomicAdd(reinterpret_cast<__half2 *>(target_addr - 1), value2);

  } else {
    atomicAdd(reinterpret_cast<__half *>(tensor) + index,
              *reinterpret_cast<__half *>(&value));
  }
#endif
}

template <
    typename T,
    typename std::enable_if<!std::is_same<float16, T>::value>::type * = nullptr>
__device__ __forceinline__ void fastAtomicAdd(T *arr,
                                              size_t index,
                                              const size_t numel,
                                              T value) {
  CudaAtomicAdd(arr + index, value);
}
#endif

// NOTE(zhangbo): cuda do not have atomicCAS for __nv_bfloat16.
inline static __device__ uint32_t bf16_add_to_low_half(uint32_t val, float x) {
  bfloat16 low_half;
  // the bfloat16 in lower 16bits
  low_half.x = static_cast<uint16_t>(val & 0xFFFFu);
  low_half = static_cast<bfloat16>(static_cast<float>(low_half) + x);
  return (val & 0xFFFF0000u) | low_half.x;
}

inline static __device__ uint32_t bf16_add_to_high_half(uint32_t val, float x) {
  bfloat16 high_half;
  // the bfloat16 in higher 16bits
  high_half.x = static_cast<uint16_t>(val >> 16);
  high_half = static_cast<bfloat16>(static_cast<float>(high_half) + x);
  return (val & 0xFFFFu) | (static_cast<uint32_t>(high_half.x) << 16);
}

#if CUDA_VERSION >= 11000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
static __device__ __forceinline__ bfloat16 CUDABF16ToPDBF16(__nv_bfloat16 x) {
  return *reinterpret_cast<bfloat16 *>(&x);
}

static __device__ __forceinline__ __nv_bfloat16 PDBF16ToCUDABF16(bfloat16 x) {
  return *reinterpret_cast<__nv_bfloat16 *>(&x);
}

CUDA_ATOMIC_WRAPPER(Add, bfloat16) {
  return CUDABF16ToPDBF16(atomicAdd(reinterpret_cast<__nv_bfloat16 *>(address),
                                    PDBF16ToCUDABF16(val)));
}
#else
CUDA_ATOMIC_WRAPPER(Add, bfloat16) {
  // concrete packed bfloat16 value may exsits in lower or higher 16bits
  // of the 32bits address.
  uint32_t *address_as_ui = reinterpret_cast<uint32_t *>(
      reinterpret_cast<char *>(address) -
      (reinterpret_cast<uintptr_t>(address) & 0x02));
  float val_f = static_cast<float>(val);
  uint32_t old = *address_as_ui;
  uint32_t sum;
  uint32_t newval;
  uint32_t assumed;
  if (((uintptr_t)address & 0x02) == 0) {
    // the bfloat16 value stay at lower 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(
          address_as_ui, assumed, bf16_add_to_low_half(assumed, val_f));
    } while (old != assumed);
    bfloat16 ret;
    ret.x = old & 0xFFFFu;
    return ret;
  } else {
    // the bfloat16 value stay at higher 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(
          address_as_ui, assumed, bf16_add_to_high_half(assumed, val_f));
    } while (old != assumed);
    bfloat16 ret;
    ret.x = old >> 16;
    return ret;
  }
}
#endif

CUDA_ATOMIC_WRAPPER(Add, complex<float>) {
  float *real = reinterpret_cast<float *>(address);
  float *imag = real + 1;
  return complex<float>(CudaAtomicAdd(real, val.real),
                        CudaAtomicAdd(imag, val.imag));
}

CUDA_ATOMIC_WRAPPER(Add, complex<double>) {
  double *real = reinterpret_cast<double *>(address);
  double *imag = real + 1;
  return complex<double>(CudaAtomicAdd(real, val.real),
                         CudaAtomicAdd(imag, val.imag));
}

// For atomicMax
USE_CUDA_ATOMIC(Max, int);
USE_CUDA_ATOMIC(Max, unsigned int);
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
#if defined(__HIPCC__) || (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350)
USE_CUDA_ATOMIC(Max, unsigned long long int);  // NOLINT
#else
CUDA_ATOMIC_WRAPPER(Max, unsigned long long int) {  // NOLINT
  if (*address >= val) {
    return *address;
  }

  unsigned long long int old = *address, assumed;  // NOLINT

  do {
    assumed = old;
    if (assumed >= val) {
      break;
    }

    old = atomicCAS(address, assumed, val);
  } while (assumed != old);
}
#endif

CUDA_ATOMIC_WRAPPER(Max, int64_t) {
  // Here, we check long long int must be int64_t.
  static_assert(sizeof(int64_t) == sizeof(long long int),  // NOLINT
                "long long should be int64");
  long long int res = *address;  // NOLINT
  while (val > res) {
    long long int old = res;                                           // NOLINT
    res = (long long int)atomicCAS((unsigned long long int *)address,  // NOLINT
                                   (unsigned long long int)old,        // NOLINT
                                   (unsigned long long int)val);       // NOLINT
    if (res == old) {
      break;
    }
  }
  return res;
}

CUDA_ATOMIC_WRAPPER(Max, float) {
  if (*address >= val) {
    return *address;
  }

  int *const address_as_i = reinterpret_cast<int *>(address);
  int old = *address_as_i, assumed;

  do {
    assumed = old;
    if (__int_as_float(assumed) >= val) {
      break;
    }

    old = atomicCAS(address_as_i, assumed, __float_as_int(val));
  } while (assumed != old);

  return __int_as_float(old);
}

CUDA_ATOMIC_WRAPPER(Max, double) {
  if (*address >= val) {
    return *address;
  }

  unsigned long long int *const address_as_ull =            // NOLINT
      reinterpret_cast<unsigned long long int *>(address);  // NOLINT
  unsigned long long int old = *address_as_ull, assumed;    // NOLINT

  do {
    assumed = old;
    if (__longlong_as_double(assumed) >= val) {
      break;
    }

    old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val));
  } while (assumed != old);

  return __longlong_as_double(old);
}

#ifdef PADDLE_CUDA_FP16
inline static __device__ uint32_t max_to_low_half(uint32_t val, float x) {
  float16 low_half;
  // The float16 in lower 16bits
  low_half.x = static_cast<uint16_t>(val & 0xFFFFu);
  low_half = static_cast<float16>(max(static_cast<float>(low_half), x));
  return (val & 0xFFFF0000u) | low_half.x;
}

inline static __device__ uint32_t max_to_high_half(uint32_t val, float x) {
  float16 high_half;
  // The float16 in higher 16bits
  high_half.x = static_cast<uint16_t>(val >> 16);
  high_half = static_cast<float16>(max(static_cast<float>(high_half), x));
  return (val & 0xFFFFu) | (static_cast<uint32_t>(high_half.x) << 16);
}

CUDA_ATOMIC_WRAPPER(Max, float16) {
  if (*address >= val) {
    return *address;
  }
  uint32_t *address_as_ui = reinterpret_cast<uint32_t *>(
      reinterpret_cast<char *>(address) -
      (reinterpret_cast<uintptr_t>(address) & 0x02));
  float val_f = static_cast<float>(val);
  uint32_t old = *address_as_ui;
  uint32_t assumed;
  if (((uintptr_t)address & 0x02) == 0) {
    // The float16 value stay at lower 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, max_to_low_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old & 0xFFFFu;
    return ret;
  } else {
    // The float16 value stay at higher 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, max_to_high_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old >> 16;
    return ret;
  }
}
#endif

// For atomicMin
USE_CUDA_ATOMIC(Min, int);
USE_CUDA_ATOMIC(Min, unsigned int);
// CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
#if defined(__HIPCC__) || (defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350)
USE_CUDA_ATOMIC(Min, unsigned long long int);  // NOLINT
#else
CUDA_ATOMIC_WRAPPER(Min, unsigned long long int) {  // NOLINT
  if (*address <= val) {
    return *address;
  }

  unsigned long long int old = *address, assumed;  // NOLINT

  do {
    assumed = old;
    if (assumed <= val) {
      break;
    }

    old = atomicCAS(address, assumed, val);
  } while (assumed != old);
}
#endif

CUDA_ATOMIC_WRAPPER(Min, int64_t) {
  // Here, we check long long int must be int64_t.
  static_assert(sizeof(int64_t) == sizeof(long long int),  // NOLINT
                "long long should be int64");
  long long int res = *address;  // NOLINT
  while (val < res) {
    long long int old = res;                                           // NOLINT
    res = (long long int)atomicCAS((unsigned long long int *)address,  // NOLINT
                                   (unsigned long long int)old,        // NOLINT
                                   (unsigned long long int)val);       // NOLINT
    if (res == old) {
      break;
    }
  }
  return res;
}

CUDA_ATOMIC_WRAPPER(Min, float) {
  if (*address <= val) {
    return *address;
  }

  int *const address_as_i = reinterpret_cast<int *>(address);
  int old = *address_as_i, assumed;

  do {
    assumed = old;
    if (__int_as_float(assumed) <= val) {
      break;
    }

    old = atomicCAS(address_as_i, assumed, __float_as_int(val));
  } while (assumed != old);

  return __int_as_float(old);
}

CUDA_ATOMIC_WRAPPER(Min, double) {
  if (*address <= val) {
    return *address;
  }

  unsigned long long int *const address_as_ull =            // NOLINT
      reinterpret_cast<unsigned long long int *>(address);  // NOLINT
  unsigned long long int old = *address_as_ull, assumed;    // NOLINT

  do {
    assumed = old;
    if (__longlong_as_double(assumed) <= val) {
      break;
    }

    old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val));
  } while (assumed != old);

  return __longlong_as_double(old);
}

#ifdef PADDLE_CUDA_FP16
inline static __device__ uint32_t min_to_low_half(uint32_t val, float x) {
  float16 low_half;
  // The float16 in lower 16bits
  low_half.x = static_cast<uint16_t>(val & 0xFFFFu);
  low_half = static_cast<float16>(min(static_cast<float>(low_half), x));
  return (val & 0xFFFF0000u) | low_half.x;
}

inline static __device__ uint32_t min_to_high_half(uint32_t val, float x) {
  float16 high_half;
  // The float16 in higher 16bits
  high_half.x = static_cast<uint16_t>(val >> 16);
  high_half = static_cast<float16>(min(static_cast<float>(high_half), x));
  return (val & 0xFFFFu) | (static_cast<uint32_t>(high_half.x) << 16);
}

CUDA_ATOMIC_WRAPPER(Min, float16) {
  if (*address <= val) {
    return *address;
  }
  uint32_t *address_as_ui = reinterpret_cast<uint32_t *>(
      reinterpret_cast<char *>(address) -
      (reinterpret_cast<uintptr_t>(address) & 0x02));
  float val_f = static_cast<float>(val);
  uint32_t old = *address_as_ui;
  uint32_t assumed;
  if (((uintptr_t)address & 0x02) == 0) {
    // The float16 value stay at lower 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, min_to_low_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old & 0xFFFFu;
    return ret;
  } else {
    // The float16 value stay at higher 16 bits of the address.
    do {
      assumed = old;
      old = atomicCAS(address_as_ui, assumed, min_to_high_half(assumed, val_f));
    } while (old != assumed);
    float16 ret;
    ret.x = old >> 16;
    return ret;
  }
}
#endif

#ifdef PADDLE_CUDA_FP16
#ifdef PADDLE_WITH_CUDA
/*
 * One thead block deals with elementwise atomicAdd for vector of len.
 * @in: [x1, x2, x3, ...]
 * @out:[y1+x1, y2+x2, y3+x3, ...]
 * */
template <
    typename T,
    typename std::enable_if<!std::is_same<float16, T>::value>::type * = nullptr>
__device__ __forceinline__ void VectorizedAtomicAddPerBlock(
    const int64_t len, int tid, int threads_per_block, const T *in, T *out) {
  for (int i = tid; i < len; i += threads_per_block) {
    CudaAtomicAdd(&out[i], in[i]);
  }
}

// Note: assume that len is even. If len is odd, call fastAtomicAdd directly.
template <
    typename T,
    typename std::enable_if<std::is_same<float16, T>::value>::type * = nullptr>
__device__ __forceinline__ void VectorizedAtomicAddPerBlock(
    const int64_t len, int tid, int threads_per_block, const T *in, T *out) {
#if ((CUDA_VERSION < 10000) || \
     (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 700)))
  for (int i = tid; i < len; i += threads_per_block) {
    CudaAtomicAdd(&out[i], in[i]);
  }
#else
  int i = 0;
  int loops = len / 2 * 2;

  bool aligned_half2 =
      (reinterpret_cast<std::uintptr_t>(out) % sizeof(__half2) == 0);

  if (aligned_half2) {
    for (i = tid * 2; i < loops; i += threads_per_block * 2) {
      __half2 value2;
      T value_1 = in[i];
      T value_2 = in[i + 1];
      value2.x = *reinterpret_cast<__half *>(&value_1);
      value2.y = *reinterpret_cast<__half *>(&value_2);
      atomicAdd(reinterpret_cast<__half2 *>(&out[i]), value2);
    }
    for (; i < len; i += threads_per_block) {
      fastAtomicAdd(out, i, len, in[i]);
    }
  } else {
    for (int i = tid; i < len; i += threads_per_block) {
      fastAtomicAdd(out, i, len, in[i]);
    }
  }
#endif
}
#endif
#endif
}  // namespace phi