sequence_pool_op.h 3.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <string>
Y
Yi Wang 已提交
17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

Q
QI JUN 已提交
28
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
29
class SequencePoolKernel : public framework::OpKernel<T> {
30 31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
33
    auto* out = context.Output<Tensor>("Out");
D
dzhwinter 已提交
34
    std::string pooltype = context.Attr<std::string>("pooltype");
35
    T pad_value = static_cast<T>(context.Attr<float>("pad_value"));
36 37

    auto dims = in->dims();
Q
Qiao Longfei 已提交
38 39 40 41 42 43 44 45 46
    auto lod = in->lod();
    // InferShape by lod
    PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
    PADDLE_ENFORCE_GE(
        dims[0],
        /*batch size = */ static_cast<int64_t>(lod[0].size() - 1),
        "The first dimension of Input(X) must be large than batch size.");
    dims[0] = lod[0].size() - 1;
    out->Resize({dims});
47
    out->mutable_data<T>(context.GetPlace());
J
Jacek Czaja 已提交
48 49 50 51 52 53 54 55 56 57
    Tensor* index = nullptr;

    const bool is_test = context.Attr<bool>("is_test");

    // Do not create index buffer for inference (is_test) mode
    // TODO(jczaja): Skip index buffer creation for other devices eg. GPU
    if (pooltype == "MAX" &&
        (is_test == false ||
         platform::is_cpu_place(context.GetPlace()) == false)) {
      index = context.Output<Tensor>("MaxIndex");
58 59
      index->Resize({dims});
      index->mutable_data<int>(context.GetPlace());
60
    }
D
dzhwinter 已提交
61
    math::SequencePoolFunctor<DeviceContext, T> pool;
62 63
    pool(context.template device_context<DeviceContext>(), pooltype, pad_value,
         *in, out, is_test, index);
64 65 66
  }
};

Q
QI JUN 已提交
67
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
68
class SequencePoolGradKernel : public framework::OpKernel<T> {
69 70
 public:
  void Compute(const framework::ExecutionContext& context) const override {
71
    auto* out_g = context.Input<Tensor>(framework::GradVarName("Out"));
72
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
73
    std::string pooltype = context.Attr<std::string>("pooltype");
D
dzhwinter 已提交
74
    const Tensor* index = nullptr;
75
    if (pooltype == "MAX") {
D
dzhwinter 已提交
76
      index = context.Input<Tensor>("MaxIndex");
77
    }
D
dzhwinter 已提交
78 79 80 81
    in_g->mutable_data<T>(context.GetPlace());
    math::SequencePoolGradFunctor<DeviceContext, T> pool;
    pool(context.template device_context<DeviceContext>(), pooltype, *out_g,
         in_g, index);
82 83 84 85 86
  }
};

}  // namespace operators
}  // namespace paddle