conv_transpose_mkldnn_op.cc 9.6 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "boost/optional.hpp"
J
Jacek Czaja 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

template <typename T>
class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const bool is_test = ctx.Attr<bool>("is_test");
    PADDLE_ENFORCE(
        is_test == true,
        "ConvTransposeMKLDNN works only for inference!. Set is_test = True");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != mkldnn::memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != mkldnn::memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");

    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != mkldnn::memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");

    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> iohw_weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> weights_tz = iohw_weights_tz;
    // IOHW -> OIHW
    weights_tz[0] = iohw_weights_tz[1];
    weights_tz[1] = iohw_weights_tz[0];

    // Custom Reorder from IOHW to OIHW
    auto iohw2oihw_reorder =
        [&iohw_weights_tz](const T* filter_data) -> std::shared_ptr<T> {
      int o = iohw_weights_tz[1];
      int c = iohw_weights_tz[0];
      int h = iohw_weights_tz[2];
      int w = iohw_weights_tz[3];
      std::shared_ptr<T> reordered_filter_data(new T[o * c * h * w](),
                                               std::default_delete<T[]>());
      for (int i = 0; i < c; ++i) {
        for (int j = 0; j < o; ++j) {
          int in_offset = j * h * w + i * o * h * w;
          int out_offset = j * c * h * w + i * h * w;
          std::memcpy(&(reordered_filter_data.get())[out_offset],
                      &filter_data[in_offset], h * w * sizeof(T));
        }
      }

      return reordered_filter_data;
    };

    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

    // Get unique name for storing MKLDNN primitives
    const std::string key = platform::ConvTransposeMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));

    std::vector<mkldnn::primitive> pipeline;

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md =
        platform::MKLDNNMemDesc({weights_tz}, platform::MKLDNNGetDataType<T>(),
                                (g == 1) ? mkldnn::memory::format::oihw
                                         : mkldnn::memory::format::goihw);

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");

    auto src_md = platform::MKLDNNMemDesc(
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
    auto weights_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
    auto dst_md = platform::MKLDNNMemDesc(
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

156
    platform::ConvTransposeMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);
J
Jacek Czaja 已提交
157 158 159 160 161 162 163 164 165 166
    // create a deconv(conv transpose) primitive descriptor and save it for
    // usage in backward
    std::shared_ptr<mkldnn::deconvolution_forward::primitive_desc>
        conv_transpose_pd;
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), mkldnn::memory::format::x);
167
      conv_transpose_pd = handler.AcquireConvolutionPrimitiveDescriptor(
J
Jacek Czaja 已提交
168
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
169
          fuse_relu, false, false, 0.0, fwd_prop_kind);
J
Jacek Czaja 已提交
170
    } else {
171 172
      conv_transpose_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
173
          mkldnn_engine, fuse_relu, false, false, 0.0, fwd_prop_kind);
J
Jacek Czaja 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    }

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p = handler.AcquireSrcMemory(
        user_src_md, platform::to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, platform::to_void_cast<T>(filter_data),
        is_test ? iohw2oihw_reorder : platform::user_function());

    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);

    std::shared_ptr<mkldnn::memory> dst_memory_p;

    auto output_data = output->mutable_data<T>(
        ctx.GetPlace(), paddle::memory::Allocator::kDefault,
        handler.GetDstMemorySize());
    dst_memory_p = handler.AcquireDstMemoryFromPrimitive(
        platform::to_void_cast<T>(output_data));

    // create convolution op primitive
    std::shared_ptr<mkldnn::deconvolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md =
          platform::MKLDNNMemDesc({bias_tz}, platform::MKLDNNGetDataType<T>(),
                                  mkldnn::memory::format::x);
      auto user_bias_memory_p = handler.AcquireBiasMemory(
          user_bias_md, platform::to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }

    // push primitive to stream and wait until it's executed
    pipeline.push_back(*conv_p);
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();

220 221
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
J
Jacek Czaja 已提交
222 223 224 225 226 227 228 229 230 231
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d_transpose, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ConvTransposeMKLDNNOpKernel<float>);