elementwise_div_op.h 10.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

C
chentianyu03 已提交
17
#include <string>
18 19
#include <vector>
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
W
Wu Yi 已提交
20 21
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
22
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
23
#include "paddle/fluid/operators/math/blas.h"
24 25
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"

26 27 28 29 30 31
#include "paddle/fluid/framework/pten_utils.h"

// only can include the headers in paddle/pten/include dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/include/math.h"
G
gongweibao 已提交
32 33 34
namespace paddle {
namespace operators {

35 36 37 38 39
template <typename DeviceContext, typename T>
void default_elementwise_div(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
40 41 42
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
43 44 45 46 47 48
    ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          DivFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseDivFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseDivFunctor<T>(), z);
  }
49 50
}

Q
QI JUN 已提交
51
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
52
class ElementwiseDivKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
53 54
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
55 56 57
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
58
    z->mutable_data<T>(ctx.GetPlace());
59

60 61 62 63 64 65 66
    auto& dev_ctx = ctx.device_context<DeviceContext>();
    int axis = ctx.Attr<int>("axis");
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_z = paddle::experimental::MakePtenDenseTensor(*z);
    pten::ElementwiseDiv<T>(dev_ctx, *pt_x.get(), *pt_y.get(), axis,
                            pt_z.get());
G
gongweibao 已提交
67 68 69 70
  }
};

template <typename T>
C
chengduoZH 已提交
71 72
struct DivGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; }
G
gongweibao 已提交
73 74
};

75 76 77 78 79 80 81
template <typename T>
struct DivGradDX<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> y_conj(y.real, -y.imag);
82 83 84 85
    return dout / y_conj;
  }
};

G
gongweibao 已提交
86
template <typename T>
C
chengduoZH 已提交
87 88
struct DivGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
89
    return -dout * out / y;
G
gongweibao 已提交
90 91 92
  }
};

93 94 95 96 97 98 99
template <typename T>
struct DivGradDY<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> out_div_y_conj((out / y).real,
100 101 102 103 104
                                                -(out / y).imag);
    return -dout * out_div_y_conj;
  }
};

105 106 107 108 109 110 111
template <typename T>
struct DivDoubleDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return y * out * dout - x * dout;
  }
};

112 113 114 115 116 117 118 119 120 121 122 123 124
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_div_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
}

125
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
126 127 128 129 130 131 132 133 134 135 136
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_div_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
137
template <typename DeviceContext, typename T>
138
class ElementwiseDivGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
139 140
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
141
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
142 143
    using Tensor = framework::Tensor;

144
    auto* x = ctx.Input<Tensor>("X");
C
chengduoZH 已提交
145 146 147 148 149 150
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
151

152 153 154 155 156 157 158
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_div_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
      ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(),
          DivGradDY<T>());
    }
G
gongweibao 已提交
159 160 161
  }
};

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
class ElementwiseDivOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput("DOut")) {
      ctx->ShareDim("DX", "DOut");
      ctx->ShareLoD("DX", "DOut");
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DX", "DDOut");
      ctx->ShareLoD("DX", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
C
chentianyu03 已提交
185
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Out");
186 187

#ifdef PADDLE_WITH_MKLDNN
188
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
189 190 191 192 193 194 195
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
};

template <typename DeviceContext, typename T>
class ElementwiseDivDoubleGradKernel : public framework::OpKernel<T> {
  using Tensor = framework::Tensor;

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Input<Tensor>("Out");
    auto* ddX = ctx.Input<Tensor>("DDX");
    auto* ddY = ctx.Input<Tensor>("DDY");
    auto* dX = ctx.Input<Tensor>("DX");

    auto* dY = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* dOut = ctx.Output<Tensor>("DOut");
    auto* ddOut = ctx.Output<Tensor>("DDOut");

    int axis = ctx.Attr<int>("axis");

    if (dY) dY->mutable_data<T>(Y->dims(), ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    // ddX_safe == null ? 0 : ddX
    // ddY_safe == null ? 0 : ddY
    Tensor ddX_safe, ddY_safe;
236
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dX, ddX, &ddX_safe);
237 238
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, Y, ddY, &ddY_safe);

239 240 241 242 243 244
    // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
    // dY = Out * dX * ddY / Y - dX * ddX / Y
    // dOut = - dX * ddY
    // To save memory, (1) dout can be used as 'tmp' tensor, (2) ddout can
    // inplace ddx
    Tensor tmp;
245
    if (dOut) {
246 247 248 249
      tmp = *dOut;
    } else {
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      tmp = ctx.AllocateTmpTensor<T, DeviceContext>(Out->dims(), dev_ctx);
250 251 252
    }
    if (dY) {
      // dX_div_Y = dX / Y;
253
      Tensor dX_div_Y = tmp;
254
      default_elementwise_div<DeviceContext, T>(ctx, dX, Y, &dX_div_Y);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

      // NOTE(dengkaipeng): in the following ElemwiseGradCompute, for the
      // first output tensor is nullptr, the branch to calculate first
      // output tensor will not be activated, DivGradDx function will not
      // be called and can be ignored, the first branch has little effect
      // on running speed.

      // dY = Out * dX * ddY / Y - dX * ddX / Y
      ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivDoubleDY<T>>(
          ctx, ddX_safe, ddY_safe, *Out, dX_div_Y, axis, nullptr, dY,
          DivGradDX<T>(), DivDoubleDY<T>());
    }

    if (ddOut) {
      // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
270
      default_elementwise_mul<DeviceContext, T>(ctx, Out, &ddY_safe, &tmp);
271 272
      default_elementwise_sub<DeviceContext, T>(ctx, &ddX_safe, &tmp, &tmp);
      default_elementwise_div<DeviceContext, T>(ctx, &tmp, Y, ddOut);
273 274 275 276 277 278 279 280 281
    }

    if (dOut) {
      // dOut = - dX * ddY
      default_elementwise_mul<DeviceContext, T>(ctx, dX, &ddY_safe, dOut);
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
      auto dout = framework::EigenVector<T>::Flatten(*dOut);
      dout.device(place) = static_cast<T>(-1) * dout;
282 283 284 285
    }
  }
};

G
gongweibao 已提交
286 287
}  // namespace operators
}  // namespace paddle