engine.py 68.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import logging
17
import numbers
18 19
import os
import random
20 21
from collections import defaultdict

22 23
import numpy as np

24
import paddle
25
import paddle.distributed.auto_parallel.utils as auto_utils
26
import paddle.utils as utils
27
from paddle import static
28
from paddle.distributed import fleet
29 30 31 32
from paddle.fluid.executor import _to_name_str
from paddle.framework import IrGraph
from paddle.framework import _current_expected_place as _get_device
from paddle.framework import core, in_dygraph_mode
33
from paddle.metric import Metric
34
from paddle.static import InputSpec, Operator, Variable, global_scope
35

36
from ..utils.log_utils import get_logger
Z
zhaoyingli 已提交
37
from .callbacks import config_callbacks
38
from .cluster import Cluster, get_default_cluster
39 40 41
from .converter import Converter
from .cost.estimate_cost import get_cost_from_engine
from .dist_context import DistributedContext, get_default_distributed_context
42 43
from .dist_loader import (
    DistributedDataLoader,
44
    DistributedDataLoaderFromGenerator,
45
)
46 47 48
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .helper import ProgramHelper
49
from .interface import CollectionNames, get_collection
50 51 52 53
from .parallelizer_v2 import Parallelizer
from .planner_v2 import Planner
from .process_group import get_all_process_groups, new_process_group
from .strategy import Strategy
54

55 56

class Engine:
57
    """
58 59
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
60 61 62 63 64 65 66
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
67 68
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
85
            from paddle.distributed.fleet import auto
86 87 88 89 90 91 92 93 94 95
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
96
            loss = paddle.nn.CrossEntropyLoss()
97 98 99 100
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

101 102
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
103 104 105
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
106
            # evaluate
107 108 109 110 111 112 113
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
114
            # load
115 116 117
            engine.load("./my_model")

    """
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
134 135 136 137
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
138 139 140 141 142 143 144 145 146

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
147 148 149
        self._loss = loss

        if optimizer and not isinstance(
150
            optimizer,
151
            (paddle.optimizer.Optimizer, paddle.static.Optimizer),
152
        ):
153 154
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
155
                " or `paddle.static.Optimizer`."
156
            )
157
        self._optimizer = auto_utils.validate_opt(optimizer)
158
        self._orig_optimizer = copy.deepcopy(self._optimizer)
159 160

        metrics = metrics or []
161
        for metric in auto_utils.to_list(metrics):
162 163 164 165 166 167
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
168
        self._metrics = auto_utils.to_list(metrics)
169 170 171 172 173 174 175 176 177 178 179 180 181

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

182
        self._logger = get_logger(logging.INFO)
183
        if os.getenv("POD_NAME"):
184 185
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
186
            )
187
            fleet.init(is_collective=True)
188

189
        self._executor = None
190 191 192
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
193

194 195
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
196
        self._orig_dist_context = get_default_distributed_context()
197
        self._dist_contexts = {}
198 199
        self._fwd_main_progs = {}
        self._fwd_dist_contexts = {}
200 201
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
202 203 204 205
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
206
        self._planners = {}
207 208
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
209 210
            "train": False,
            "eval": False,
211
            "predict": False,
212
        }
213 214 215 216
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
217
        self._losses = []
218

219
        self._mode = None
220 221
        self._skip_build = False
        self._outside_dataloader = False
222
        self._planned_mode = None
223 224
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
225

Z
zhaoyingli 已提交
226 227
        self.history = None

228 229
        paddle.framework.set_flags({'FLAGS_new_executor_sequential_run': 1})

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
248
            raise TypeError(
C
chenxujun 已提交
249
                "Data should be a Dataset or IterableDataset, but received {}.".format(
250 251 252
                    type(data).__name__
                )
            )
253 254
        inputs = auto_utils.to_list(inputs)
        labels = auto_utils.to_list(labels)
255 256

        num_shards = self._strategy.dataset.num_shards
257

258 259 260 261 262 263 264 265 266 267 268 269 270 271
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                spec = InputSpec.from_tensor(item, name)
272
                _adjust_item_spec(num_shards, spec)
273 274 275 276
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
277
            elif isinstance(item, numbers.Number):
278
                specs.append(InputSpec([batch_size], type(item), name))
279 280 281 282 283 284
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

301
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
302
        if in_dygraph_mode() or self._dygraph_mode:
303 304
            raise ValueError("Only support static graph mode.")

305
        if inputs_spec:
306 307 308 309 310
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
311 312 313 314 315 316 317 318 319
            assert isinstance(
                inputs, list
            ), "inputs should be list, but received {}".format(type(inputs))
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
320
        if labels_spec:
321 322 323 324 325
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
326 327 328 329 330 331 332 333 334 335
            assert isinstance(
                labels, list
            ), "labels should be list, but received {}".format(type(labels))
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

336 337 338 339 340 341 342 343 344
        return inputs, labels

    def _prepare_reader(self):
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
345 346 347
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
365 366 367
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
                    for name, data in data[0].items():
                        feeds[name] = data
                else:
                    raise ValueError("Unsupported data {}".format(data))
            elif isinstance(data, dict):
                for name, data in data.items():
                    feeds[name] = data
            else:
                raise ValueError("Unsupported data {}".format(data))
397
        if user_feeds is not None:
398 399 400 401 402
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
403 404
            for name, data in user_feeds.items():
                feeds[name] = data
405 406
        return feeds

407
    def _prepare_fetch(self, user_fetches, mode):
408
        if user_fetches is not None:
409 410 411 412 413
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
414
        fetch_names = []
415
        fetch_indices = []
416

417 418
        def _process_fetch_group(group_name, var_list):
            group_indices = []
419
            for var in var_list:
420 421 422 423 424 425
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
426 427
            if not group_indices:
                fetch_names.append([])
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            fetch_indices.append(group_indices)

        if mode != "predict":
            _process_fetch_group("loss", self._fetch_vars[mode]["loss"])
        if mode != "predict":
            metrics = self._fetch_vars[mode]["metrics"]
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
            _process_fetch_group("outputs", self._fetch_vars[mode]["outputs"])
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
        var_list = (user_fetches_collection or []) + (user_fetches or [])
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

445 446 447 448 449 450 451 452 453 454
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
455
        logs = {}
456
        if epoch is not None:
Z
zhaoyingli 已提交
457
            logs["epoch"] = epoch
458
        if step is not None:
Z
zhaoyingli 已提交
459
            logs["step"] = step + 1
460
        if lr is not None:
Z
zhaoyingli 已提交
461
            logs["lr"] = lr
462 463
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
464
            # logging loss
465
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
466
            assert len(loss_indices) <= 1
467
            for idx in loss_indices:
Z
zhaoyingli 已提交
468
                logs["loss"] = outs[idx][0]
469
            group_idx += 1
Z
zhaoyingli 已提交
470
            # logging metrics
471 472 473 474 475 476 477 478 479 480
            metric_vars = self._fetch_vars[mode]["metrics"]
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
481
                        for i, res in enumerate(auto_utils.to_list(results)):
Z
zhaoyingli 已提交
482
                            logs[metric.name()[i]] = res
483
                    group_idx += 1
Z
zhaoyingli 已提交
484 485 486 487 488 489 490
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
491 492
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
493 494
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
495 496 497 498
        for name, var_name in collect_fetches:
            if var_name in fetch_names:
                idx = fetch_names.index(var_name)
                logs_fetch[name or var_name] = outs[idx]
Z
zhaoyingli 已提交
499 500
        logs["fetches"] = logs_fetch
        return logs
501

502 503 504 505 506 507 508 509 510 511 512
    def _prepare_program(self, mode):
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
        # Init comm and startup program
        self._initialize(mode)
        self._has_prepared[mode] = True

513
    def _build(self, mode):
514
        if in_dygraph_mode() or self._dygraph_mode:
515
            paddle.disable_static()
516 517 518
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

519
            self.program_helper = ProgramHelper(
520 521 522 523 524
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
525
            )
526
            # build forward main program
527 528
            with utils.unique_name.guard():
                self.program_helper.build_program(mode)
529

530 531 532
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
533

534 535
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
536
            outputs = self.program_helper.output_vars
537
            self._losses = self.program_helper.loss_vars
538
            metrics = self.program_helper.metric_vars
539

540
            paddle.enable_static()
541
        else:
542
            # build program in static graph mode
543 544 545 546
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

547
            outputs = []
548
            metrics = []
549
            self._losses = []
550 551
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
552
            if not self._skip_build:
553 554 555
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
556 557 558 559 560 561 562
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

563
                    outputs = auto_utils.to_list(self._model(*self._inputs))
564

565
                    if mode != "predict" and self._loss:
566 567 568 569 570
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
571
                        self._losses = auto_utils.to_list(
572 573
                            self._loss(*(outputs + self._labels))
                        )
574

575
                    if mode != "predict" and (outputs or self._labels):
576 577
                        for metric in self._metrics:
                            metrics.append(
578
                                auto_utils.to_list(
579 580
                                    metric.compute(*(outputs + self._labels))
                                )
581
                            )
Z
zhaoyingli 已提交
582
            elif mode == "train":
583 584 585
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
586
                self._losses = auto_utils.to_list(self._loss)
587 588 589 590 591 592 593

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True
594 595 596 597 598 599
            self._inputs = [
                auto_utils.set_data_parallel(var) for var in self._inputs
            ]
            self._labels = [
                auto_utils.set_data_parallel(var) for var in self._labels
            ]
600

601
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
602 603

        fetch_vars = {
604
            "outputs": paddle.utils.flatten(outputs),
605
            "loss": self._losses,
606
            "metrics": metrics,
607 608
        }

609 610 611
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

612 613 614
        auto_utils.set_recompute_segments(
            self._model, self._losses, self._strategy, serial_main_prog
        )
615
        self._dist_contexts[mode] = DistributedContext(
616 617 618
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
619 620 621 622 623 624 625 626 627 628 629
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
630 631 632 633 634
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
635
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
636
        self._fwd_main_progs[mode] = serial_main_prog.clone()
637

638 639 640
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
641

642 643 644 645 646 647 648 649
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
650 651

        from .tuner.optimization_tuner import OptimizationTuner
652 653 654 655 656 657 658 659 660

        self._optimization_tuner = OptimizationTuner(
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
661 662 663

        self._optimization_tuner.tune()

664
        if self._tuning.run_after_tuning:
665 666
            # update the strategy
            self._dist_contexts[
667 668
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
669

670 671 672 673 674 675
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

676 677
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
678

679 680 681 682
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
683
        # TODO: check this feed_list
684 685 686 687 688
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

689 690
        self._dp_world_sizes = []
        self._dp_ranks = []
691
        for feed_var in feed_list:
692
            dp_world_size, dp_rank = auto_utils.get_input_split_info(
693
                self._cur_rank, feed_var, self._dist_contexts[mode]
694
            )
695 696
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
697

698
    def _parallel(self, mode, all_ranks=False):
699 700
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
C
chenxujun 已提交
701
        # because we may use it to complete the annotation of the backward and update.
702
        parallelizer = Parallelizer(
Y
yuehuayingxueluo 已提交
703 704 705
            mode,
            self._planners[mode].completer,
            self._dist_contexts[mode],
706
        )
707 708 709 710
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
711 712

    def _init_dist_context(self, mode):
713
        # Init dist_context['mode'] with the first planned dist_context
714 715 716 717 718 719 720 721 722 723
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
724 725 726 727 728 729 730 731
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
732 733 734
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
735
        # Get the current content from the distributed context
736
        self._serial_main_progs[mode] = self._dist_contexts[
737 738
            mode
        ].serial_main_program
739
        self._serial_startup_progs[mode] = self._dist_contexts[
740 741
            mode
        ].serial_startup_program
742
        self._dist_main_progs[mode] = self._dist_contexts[
743 744
            mode
        ].dist_main_programs
745
        self._dist_startup_progs[mode] = self._dist_contexts[
746 747
            mode
        ].dist_startup_programs
748 749
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
Z
zhaoyingli 已提交
750
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
751

752 753 754 755
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
C
caozhou 已提交
756
            cur_rank = self._cur_rank
757 758 759
            # NOTE: After the implementation of the unified dynamic and static communication group
            # initialization mode in the future, the initialization logic of full mode
            # will be removed because port occupation error may occur.
760
            if self._strategy.auto_mode == "full":
761 762 763
                auto_utils.initialize_pg_in_full_mode(
                    all_process_groups, cur_rank
                )
764 765
            else:
                for process_group in all_process_groups:
C
caozhou 已提交
766
                    if cur_rank not in process_group.ranks:
767 768
                        continue
                    process_group.instantiate()
769

770
        self._place = _get_device()
771
        if isinstance(self._place, paddle.framework.CUDAPlace):
772 773 774
            self._place = paddle.framework.CUDAPlace(
                paddle.distributed.ParallelEnv().dev_id
            )
775

776 777 778 779 780
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

781
        if self._dygraph_mode:
782 783
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
784 785 786
            self.program_helper.init(
                dist_main_program, self._place, dist_context
            )
787

788
        if self._executor is None:
789
            self._executor = paddle.static.Executor(self._place)
790 791 792 793 794 795 796 797 798 799
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
800

801
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
802 803 804
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
805 806

        if self._strategy.reinit:
Z
zhaoyingli 已提交
807
            self._logger.info("NOTE: parameters will be re-initialized.")
808 809 810
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            self._executor.run(dist_startup_prog)

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
829 830 831 832 833 834 835 836
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
837
                more than two items, train_sample_split specifies how to split these items into
838
                input and label. The items before it are input and the left are label. Default: None.
839
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
840 841 842
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
843
                is executed in one epoch before stating the next one. If None, it is equal to
844 845
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
846
                evaluation at the end of epoch. No evaluation will be done if set to None.
847
                Default: None. (Unsupported for now)
848
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
849 850
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
851 852
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
853 854 855
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
856 857
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
858 859 860 861
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
862
                0. Default None.
863 864 865 866 867 868 869 870 871 872 873 874
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
875
                from paddle.distributed.fleet import auto
876 877 878 879 880 881 882 883 884
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
885
                loss = paddle.nn.CrossEntropyLoss()
886 887 888 889
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

890
                engine = auto.Engine(model, loss, optimizer, metrics)
891 892 893 894
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
895 896
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
897 898
            train_data, train_sample_split, batch_size
        )
899 900
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
901
        else:
902
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
903

904 905 906 907 908 909 910
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
911 912
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
913

914
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
941 942
                        return_numpy=self._strategy.return_numpy,
                    )
Z
zhaoyingli 已提交
943 944
                except core.EOFException:
                    break
945
                lr = auto_utils.get_lr(self._optimizer)
946 947 948 949 950 951 952 953 954
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
Z
zhaoyingli 已提交
955 956 957
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
958 959 960 961 962 963 964 965 966 967
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
968
                val_logs = {
969
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
970 971 972 973 974 975 976 977 978 979
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
980

981 982 983 984 985 986 987 988 989 990 991
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
992 993 994 995
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
996 997
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
998
                to be a (input, label) pair by default and has two items. If each sample has
999
                more than two items, valid_sample_split specifies how to split these items into
1000
                input and label. The items before it are input and the left are label. Default: None.
1001
            batch_size (int, optional): The batch size of valid_data. The user's data will
1002
                be used directly without batching if set to None. Default: 1.
1003 1004
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
1005 1006 1007 1008 1009
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1010
                during evaluating. Default: None. (Unused for now)
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1021
                from paddle.distributed.fleet import auto
1022 1023 1024 1025 1026 1027 1028 1029 1030
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
1031
                loss = paddle.nn.CrossEntropyLoss()
1032 1033
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1034
                engine = auto.Engine(model, loss, metrics=metrics)
1035 1036 1037
                engine.evaluate(valid_dataset, batch_size=64)

        """
1038 1039
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1040 1041
            valid_data, valid_sample_split, batch_size
        )
1042 1043
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1044
        else:
1045
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1046

1047 1048 1049 1050 1051 1052
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1053 1054
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1055

1056
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1057

Z
zhaoyingli 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1068 1069 1070
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1071
        logs = {}
1072
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1073
            cbks.on_batch_begin('eval', step, logs)
1074
            try:
1075 1076
                outs = self._executor.run(
                    self.main_program,
1077
                    fetch_list=fetch_names,
1078
                    use_program_cache=self._strategy.use_cache,
1079 1080
                    return_numpy=self._strategy.return_numpy,
                )
1081
            except core.EOFException:
1082
                break
1083 1084 1085
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1086 1087
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1088
        self._reset_metrics()
Z
zhaoyingli 已提交
1089
        return logs
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1101 1102 1103 1104 1105 1106 1107
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1108
                more than two items, test_sample_split specifies how to split these items into
1109 1110 1111
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1112 1113
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1130
                from paddle.distributed.fleet import auto
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1141
                engine = auto.Engine(model)
1142 1143
                engine.predict(valid_dataset, batch_size=64)
        """
1144 1145
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1146 1147
            test_data, test_sample_split, batch_size
        )
1148 1149
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1150
        else:
1151
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1152

1153 1154 1155 1156 1157 1158
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1159 1160
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1161

1162
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1163

Z
zhaoyingli 已提交
1164 1165 1166 1167 1168
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1169
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1170
            cbks.on_batch_begin('predict', step, logs)
1171
            try:
1172 1173
                outs = self._executor.run(
                    self.main_program,
1174
                    fetch_list=fetch_names,
1175
                    use_program_cache=self._strategy.use_cache,
1176 1177
                    return_numpy=self._strategy.return_numpy,
                )
1178
            except core.EOFException:
1179
                break
1180 1181 1182
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1183 1184 1185 1186 1187
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1205 1206 1207
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1208 1209
            dataset, sample_split, batch_size
        )
1210 1211
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1212
        else:
1213
            self._switch_mode(self._mode)
1214

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1228 1229
            steps_per_epoch=steps_per_epoch,
        )
1230 1231
        return dataloader

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1247 1248 1249
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1250 1251
            dataset, sample_split, batch_size
        )
1252 1253 1254 1255
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1268 1269
            collate_fn=collate_fn,
        )
1270 1271
        return dataloader

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
    ):
1282 1283
        if mode is not None:
            self.to_mode(mode)
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1300 1301
        if inputs or labels:
            self._skip_build = True
1302 1303
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
1304
            )
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
1316 1317 1318
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1319

1320 1321 1322 1323 1324 1325 1326
        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)

1327
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1328 1329 1330 1331
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1332 1333 1334 1335
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1336
            self._prepare_reader()
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1347
        return logs
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1365

1366
        if self._strategy.gradient_merge and batch_size is not None:
1367 1368 1369 1370 1371
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1372
            batch_size //= self._k_steps
1373

1374 1375
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
1376
        dist_main_block = dist_main_prog.global_block()
1377

1378 1379 1380 1381
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1382 1383
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
1384 1385 1386 1387
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1388 1389 1390 1391
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1392 1393

        # insert read op at the end of program
1394
        places = paddle.static.cuda_places()
1395
        with static.program_guard(dist_main_prog, dist_startup_prog):
1396
            dataloader = DistributedDataLoader(
1397
                dataset,
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1413
                data_parallel_world_size=self._dp_world_sizes,
1414 1415
                data_parallel_rank=self._dp_ranks,
            )
1416

1417 1418
        return dataloader

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1433 1434

        if self._strategy.gradient_merge and batch_size is not None:
1435 1436 1437 1438 1439
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
            batch_size //= self._k_steps

        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1479 1480
                data_parallel_rank=self._dp_ranks,
            )
1481 1482 1483 1484 1485 1486
        self._prepare_reader()
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1487 1488
            tune_data, tune_sample_split, batch_size
        )
1489 1490
        self._optimization_tuning(self._mode, tune_data, batch_size)

1491
    def _validate_spec(self, specs):
1492
        specs = auto_utils.to_list(specs)
1493
        self._k_steps = self._strategy.gradient_merge.k_steps
1494 1495
        if specs is not None:
            for i, spec in enumerate(specs):
1496 1497 1498 1499
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1500 1501
                if spec.name is None:
                    raise ValueError(
1502 1503 1504 1505
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1506
                if self._k_steps > 1:
1507
                    shape = list(spec.shape)
1508 1509 1510 1511 1512
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1513
                    shape[0] //= self._k_steps
1514
                    spec.shape = shape
1515 1516 1517
        return specs or []

    def _validate_vars(self, vars):
1518
        vars = auto_utils.to_list(vars)
1519 1520 1521 1522 1523
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1524

1525 1526 1527 1528
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1529 1530 1531 1532
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1533 1534 1535
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
1536
            metrics_name.extend(auto_utils.to_list(m.name()))
Z
zhaoyingli 已提交
1537 1538
        return metrics_name

1539
    def _switch_mode(self, mode):
1540 1541 1542
        assert (
            mode in self._dist_main_progs
        ), "{} model is not ready, please call `prepare()` first.".format(mode)
1543
        self.to_mode(mode)
Z
zhaoyingli 已提交
1544
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
1545

1546
    def to_mode(self, mode):
1547 1548 1549 1550 1551
        assert mode in [
            "train",
            "eval",
            "predict",
        ], "mode {} should be one of ['train', 'eval', 'predict']".format(mode)
1552 1553
        self._mode = mode

1554 1555 1556
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        program = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
1557
        cur_dist_attr = auto_utils.get_dist_attr(program, dist_context)
1558 1559 1560 1561 1562
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1563 1564
        """
        Saves the model, parameters, optimizer state to path.
1565 1566 1567 1568 1569 1570 1571
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1572
                for inference only. If `training` is set to True, the optimizer state
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1585
                from paddle.distributed.fleet import auto
1586 1587 1588 1589 1590 1591 1592 1593 1594
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1595
                loss = paddle.nn.CrossEntropyLoss()
1596 1597 1598 1599
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1600
                engine = auto.Engine(model, loss, optimizer, metrics)
1601 1602 1603 1604
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1605

1606
        """
1607
        if training:
Z
zhaoyingli 已提交
1608 1609 1610 1611
            assert self._mode in self._serial_main_progs
            serial_program = self._serial_main_progs[self._mode]
            dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
            dist_context = self._dist_contexts[self._mode]
1612 1613 1614 1615 1616 1617
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1618
        else:
Z
zhaoyingli 已提交
1619 1620 1621 1622
            assert "predict" in self._dist_main_progs
            feed_vars = self._feed_vars["predict"]['inputs']
            fetch_vars = self._fetch_vars["predict"]['outputs']
            dist_main_prog = self._dist_main_progs["predict"][self._cur_rank]
1623
            if self._strategy.qat.enable and self._strategy.qat.onnx_format:
1624
                from paddle.static.quantization import QuantWeightPass
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

                self._logger.info("export quantized model.")
                self._logger.info(
                    "convert config {}".format(self._strategy.qat.to_dict())
                )
                test_graph = IrGraph(
                    core.Graph(dist_main_prog.desc), for_test=True
                )
                quant_weight_pass = QuantWeightPass(global_scope(), self._place)
                for sub_graph in test_graph.all_sub_graphs():
                    quant_weight_pass.apply(sub_graph)
                dist_main_prog = test_graph.to_program()
1637 1638 1639 1640 1641 1642 1643
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1644

1645 1646 1647 1648 1649 1650
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1651
                optimizer states.
1652 1653 1654
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1655
                mismatch shape). Default: True.
1656
            load_optimizer (bool, optional): If True, the stored optimizer
1657
                states is restored. Otherwise, the optimizer states is initialized
1658
                from scratch. Default: True.
1659 1660 1661 1662 1663 1664 1665 1666 1667

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1668
                from paddle.distributed.fleet import auto
1669 1670 1671 1672 1673 1674 1675 1676 1677
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1678
                loss = paddle.nn.CrossEntropyLoss()
1679 1680 1681 1682
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1683
                engine = auto.Engine(model, loss, optimizer, metrics)
1684 1685 1686 1687 1688
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1689

1690 1691 1692
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1693 1694
            path, load_optimizer
        )
1695
        return self._state_dict, self._dist_attr
1696

1697
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
1708
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1709 1710 1711 1712 1713 1714 1715

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
1716
            self._logger.info(
1717 1718 1719 1720 1721
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
1722 1723 1724
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
1725 1726
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
1727
                    mode, list(self._has_prepared.keys())
1728 1729
                )
            )
1730 1731
        self.to_mode(mode)

1732 1733 1734
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1735 1736 1737
            self._build(mode)
            self._plan(mode)
        else:
1738
            if in_dygraph_mode() or self._dygraph_mode:
1739
                raise ValueError(
1740 1741 1742 1743 1744
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                )
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
1745
                )
1746 1747 1748 1749 1750 1751 1752 1753
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1754 1755 1756 1757 1758 1759

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1760 1761
    @property
    def main_program(self):
1762
        return self._dist_main_progs[self._mode][self._cur_rank]
1763 1764 1765

    @property
    def startup_program(self):
1766
        return self._dist_startup_progs[self._mode][self._cur_rank]
1767 1768 1769

    @property
    def dist_context(self):
1770
        return self._dist_contexts[self._mode]
1771 1772 1773

    @property
    def serial_main_program(self):
1774
        return self._serial_main_progs[self._mode]
1775 1776 1777

    @property
    def serial_startup_program(self):
1778
        return self._serial_startup_progs[self._mode]
1779 1780 1781

    @property
    def fetch_vars(self):
1782
        return self._fetch_vars[self._mode]
1783 1784 1785

    @property
    def inputs(self):
1786
        return self._inputs
1787 1788 1789

    @property
    def labels(self):
1790
        return self._labels