model.py 90.9 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import os
import pickle
import numpy as np
import six
import warnings
21 22 23
import time
import socket
import contextlib
24

25
import paddle
26
from paddle import fluid
27
from paddle.fluid import core
28
from paddle.fluid.framework import _non_static_mode, in_dygraph_mode
29 30
from paddle.fluid.framework import Variable
from paddle.fluid.framework import _get_paddle_place
31
from paddle.fluid.framework import _current_expected_place as _get_device
32 33 34 35
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
36 37
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
38
from paddle.fluid.layers.utils import flatten
39
from paddle.fluid.layers import collective
40

41 42 43
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
44
from paddle.metric import Metric
45
from paddle.static import InputSpec as Input
46
import paddle.distributed as dist
J
Jiaqi Liu 已提交
47 48
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet.base import role_maker
49

L
LiuChiachi 已提交
50
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
51
from .model_summary import summary
52

53
__all__ = []
54 55 56 57 58 59 60 61 62 63 64 65 66

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
H
hong 已提交
67 68 69
    assert isinstance(var, (Variable, fluid.core.VarBase,
                            fluid.core.eager.Tensor)), "not a variable"
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
103 104 105 106
    return collective._c_allgather(x,
                                   nranks,
                                   ring_id=ring_id,
                                   use_calc_stream=use_calc_stream)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134


def wait_server_ready(endpoints):
    assert not isinstance(endpoints, six.string_types)
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
                    socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


def init_communicator(program, rank, nranks, wait_port, current_endpoint,
                      endpoints):
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
135
    block = program.global_block()
136 137
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
138 139 140 141 142 143
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        block.append_op(type='c_gen_nccl_id',
                        inputs={},
                        outputs={'Out': nccl_id_var},
                        attrs={
                            'rank': rank,
                            'endpoint': current_endpoint,
                            'other_endpoints': other_endpoints
                        })

        block.append_op(type='c_comm_init',
                        inputs={'X': nccl_id_var},
                        outputs={},
                        attrs={
                            'nranks': nranks,
                            'rank': rank,
                            'ring_id': 0,
                        })
161 162
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
163
            name=fluid.unique_name.generate('hccl_id'),
164 165
            persistable=True,
            type=core.VarDesc.VarType.RAW)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        block.append_op(type='c_gen_hccl_id',
                        inputs={},
                        outputs={'Out': hccl_id_var},
                        attrs={
                            'rank': rank,
                            'endpoint': current_endpoint,
                            'other_endpoints': other_endpoints
                        })
        block.append_op(type='c_comm_init_hccl',
                        inputs={'X': hccl_id_var},
                        outputs={},
                        attrs={
                            'rank': rank,
                            'ring_id': 0,
                            'device_id': int(os.getenv("FLAGS_selected_npus")),
                            'rank_ids': nranks
                        })
183 184 185 186 187 188 189


def prepare_distributed_context(place=None):
    if place is None:
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
            else fluid.CUDAPlace(0)

190
    place = _get_paddle_place(place)
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
            init_communicator(communicator_prog, strategy.local_rank,
                              strategy.nranks, True, strategy.current_endpoint,
                              strategy.trainer_endpoints)
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
212
        if fluid._non_static_mode():
213 214 215 216 217 218 219 220 221
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
        assert ("Only support CUDAPlace for now.")

    _parallel_context_initialized = True
    return strategy
222 223


L
LiuChiachi 已提交
224
def _update_input_info(inputs):
L
LiuChiachi 已提交
225
    "Get input shape list by given inputs in Model initialization."
226
    shapes = None
L
LiuChiachi 已提交
227
    dtypes = None
L
LiuChiachi 已提交
228 229
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
230
        dtypes = [inputs.dtype]
231
    elif isinstance(inputs, (list, tuple)):
232
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
233
        dtypes = [input.dtype for input in inputs]
234 235
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
236 237 238 239
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
240 241


242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
class StaticGraphAdapter(object):
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
        super(StaticGraphAdapter, self).__init__()
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
273 274 275
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
276
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
277

278 279 280 281 282 283 284 285
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
286
    def train_batch(self, inputs, labels=None, update=True):
287 288 289
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
        self.mode = 'train'
L
update  
lyuwenyu 已提交
290
        assert update is True, "Does not support `update == False` in static mode by now."
291 292 293 294 295 296
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

297
    def predict_batch(self, inputs):
298 299 300 301
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
302
        return self.model.network.parameters(*args, **kwargs)
303 304

    def save(self, path):
305

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
322
        _save(self.model.network.state_dict(), param_path)
323 324 325 326 327 328 329 330 331 332 333 334 335 336
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
            p.name: p
            for p in filter(is_belong_to_optimizer, prog.list_vars())
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
337
    # TODO: support save/load scaler state in static graph
338 339 340 341 342 343 344 345
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
346 347
            [param for param, state in param_state_pairs], global_scope(),
            executor)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
                    np.array(converted_state.pop("global_step")) - 1
                ) if "global_step" in converted_state else converted_state.pop(
                    "@LR_DECAY_COUNTER@", None)
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
394 395
                        accum_name = name if opt_name is None else name[
                            len(opt_name) + 1:]
396 397 398 399 400
                        for param_name, state_var in self.model._optimizer._accumulators[
                                name].items():
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
401 402 403
                                for state_key in sorted(state.keys(),
                                                        key=lambda x: len(x),
                                                        reverse=True):
404 405 406 407 408 409
                                    prefix = param_name + "_" + (
                                        opt_cls_name
                                        if opt_name is None else opt_name) + "_"
                                    if state_key.startswith(prefix):
                                        prefix_offset = state_key[len(
                                            prefix):].find("_") + len(prefix)
410 411
                                        opt_unq_name = state_key[
                                            len(param_name + "_"):prefix_offset]
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
                            dy_state_name = (param_name + "_" + opt_unq_name +
                                             "_" + accum_name + "_0")
                            converted_state[
                                state_var.name] = converted_state.pop(
                                    dy_state_name)

            assert var.name in converted_state, \
                "variable [{}] is not in optimizer state file".format(var.name)
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
        assert compiled_prog, \
            "Model is not ready, please call `model.prepare()` first"

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
        assert len(inputs) == len(self._input_vars[self.mode]), \
            "number of inputs" \
            + " does not match number of arguments of `forward` method"

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
454 455
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

456 457 458 459
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
L
Leo Chen 已提交
460 461 462 463
            if self._amp_level == 'O2' and input_dtypes[
                    idx] == core.VarDesc.VarType.FP16:
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
464
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
465 466
                    feed[n] = feed[n].astype('float16')

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

        rets = self._executor.run(compiled_prog,
                                  feed=feed,
                                  fetch_list=pruned_fetch_list,
                                  return_numpy=False)

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
503

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
            if self.mode != 'train' and self.model._test_dataloader is not None \
                    and isinstance(self.model._test_dataloader, DataLoader) \
                    and self._nranks > 1:
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
                        s[:int(total_size - current_count), ...] for s in state
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
527 528 529 530 531

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
        if mode == 'train' and self.model._optimizer \
                and self.model._optimizer._learning_rate_map:
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
563 564
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
565 566
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
567
            self._label_vars[mode] = labels
568
            outputs = to_list(self.model.network.forward(*inputs))
569

570 571
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
572 573 574 575 576 577 578 579

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
580
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
581 582 583 584 585 586

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
587 588 589 590 591 592 593
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
                        dist_strategy.amp_configs[
                            'use_pure_fp16'] = self._amp_level == 'O2'
594 595
                    self.model._optimizer = fleet.distributed_optimizer(
                        self.model._optimizer, strategy=dist_strategy)
J
Jiaqi Liu 已提交
596 597
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
                    amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
598 599
                        **self._amp_custom_lists
                    ) if self._amp_custom_lists else None
J
Jiaqi Liu 已提交
600 601 602 603 604 605
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
                        **self._amp_configs)
606 607 608 609 610 611 612 613 614 615 616

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
617
            "loss": to_list(losses),
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
            "metric": metrics
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

        assert self.model._place is not None, \
            "device is not set, please call `model.prepare()` first"

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
                if not var_py.name.startswith('nccl_id') and var and \
                        var.get_tensor()._is_initialized():
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

J
Jiaqi Liu 已提交
649 650 651 652
        if self._amp_level == "O2" and mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model._optimizer.amp_init(place)

653 654 655 656 657 658 659 660 661
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


class DynamicGraphAdapter(object):
662

663 664 665 666 667 668 669 670 671 672 673 674
    def __init__(self, model):
        super(DynamicGraphAdapter, self).__init__()
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

L
LiuChiachi 已提交
675
        self._input_info = None
J
Jiaqi Liu 已提交
676 677 678 679 680
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

681
        if self._nranks > 1:
682
            dist.init_parallel_env()
683 684 685 686 687
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
688 689
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
                self.model.network, stradegy)
690 691 692 693 694 695 696 697 698 699

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
700
    def train_batch(self, inputs, labels=None, update=True):
701 702
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
703
        self.model.network.train()
704 705
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
706
        self._input_info = _update_input_info(inputs)
707 708 709
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
710 711 712 713
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

714 715 716
        with paddle.amp.auto_cast(enable=self._amp_level != 'O0',
                                  **self._amp_custom_lists,
                                  level=self._amp_level):
J
Jiaqi Liu 已提交
717 718
            if self._nranks > 1:
                outputs = self.ddp_model.forward(
Z
zhangchunle 已提交
719
                    *[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
720 721
            else:
                outputs = self.model.network.forward(
Z
zhangchunle 已提交
722
                    *[to_variable(x) for x in inputs])
723

L
Leo Chen 已提交
724 725 726
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
        final_loss = fluid.layers.sum(losses)
727

J
Jiaqi Liu 已提交
728
        if self._amp_level != "O0":
L
Leo Chen 已提交
729
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
730
            scaled.backward()
L
lyuwenyu 已提交
731
            if update:
L
Leo Chen 已提交
732
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
733
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
734 735
        else:
            final_loss.backward()
L
lyuwenyu 已提交
736 737 738
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
739

740 741
        metrics = []
        for metric in self.model._metrics:
742
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
743
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
744 745 746 747 748 749
            metrics.append(m)

        return ([to_numpy(l) for l in losses], metrics) \
            if len(metrics) > 0 else [to_numpy(l) for l in losses]

    def eval_batch(self, inputs, labels=None):
750
        self.model.network.eval()
751 752
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
753
        self._input_info = _update_input_info(inputs)
754 755 756
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

Z
zhangchunle 已提交
757
        outputs = self.model.network.forward(*[to_variable(x) for x in inputs])
758 759 760 761 762 763 764 765 766

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

767 768
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
769 770
            losses = to_list(losses)

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
            if self.model._test_dataloader is not None and self._nranks > 1 \
                    and isinstance(self.model._test_dataloader, DataLoader):
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
                        o[:int(total_size - current_count)] for o in outputs
                    ]
                    labels = [
                        l[:int(total_size - current_count)] for l in labels
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

796
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
797
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
798 799
            metrics.append(m)

800
        if self.model._loss and len(metrics):
801
            return [to_numpy(l) for l in losses], metrics
802
        elif self.model._loss:
803 804 805
            return [to_numpy(l) for l in losses]
        else:
            return metrics
806

807
    def predict_batch(self, inputs):
808
        self.model.network.eval()
809 810
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
811
        self._input_info = _update_input_info(inputs)
812
        outputs = self.model.network.forward(*inputs)
813 814 815 816 817 818
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
819
        return self.model.network.parameters(*args, **kwargs)
820 821

    def save(self, path):
822
        params = self.model.network.state_dict()
823
        fluid.save_dygraph(params, path)
L
Leo Chen 已提交
824 825 826 827 828 829 830 831 832 833
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
                fluid.save_dygraph(optim, path)
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
834 835 836 837
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
838 839 840 841
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

842 843 844 845
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

846 847
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
848 849 850 851 852 853 854 855 856 857 858
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
        opt_name = opt_unq_name[:opt_unq_name.rfind("_")]  # remove suffix idx
859
        param_names = [param.name for param in self.model.network.parameters()]
860 861 862
        for var_name, state_var in sorted(optim_state.items(),
                                          key=lambda x: len(x[0]),
                                          reverse=True):
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
                    converted_state["global_step"] = np.array(
                        converted_state.pop("@LR_DECAY_COUNTER@")) + 1
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
                        accum_name = var_name[len(param_name + "_" + opt_name +
                                                  "_"):]
                    elif var_name.startswith(param_name +
                                             "_") and opt_name == opt_cls_name:
                        # when init optimizer without name
                        accum_name = var_name[len(param_name + "_"):]
                    else:
                        continue
                    # remove suffix idx
                    accum_name = accum_name[:accum_name.rfind("_")]
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
                    dy_state_name = (param_name + "_" + opt_unq_name + "_" +
                                     accum_name + "_0")
                    converted_state[dy_state_name] = state_var

892 893
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
894
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
895 896 897 898
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
899

L
Leo Chen 已提交
900 901 902 903 904 905 906 907 908 909
    def prepare(self):
        if self._amp_level == "O2" and self.model.mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
                level='O2')
        if self._amp_level != "O0":
            self.model._scaler = None

910

911
class Model(object):
912 913 914
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
915
    switched by `paddle.enable_static()`. The usage is as follows.
916
    But note, the switching between dynamic and static should be before
917
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
918
    must be required for static graph.
919

920
    When training on GPU, auto mixed precision (AMP O1) and pure float16
L
Leo Chen 已提交
921
    (AMP O2) training are both supported in static mode and dynamic mode.
922
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
923 924
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
925 926 927 928
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
929

930
    Args:
931 932
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
933
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
934
            could be a InputSpec instance, or list/tuple of InputSpec instances,
935
            or dict ({name: InputSpec}), and it couldn't be None in static
936 937
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
938
            could be a InputSpec instnace or list/tuple of InputSpec instances,
939
            or None. For static graph, if labels is required in loss,
940
            labels must be set. Otherwise, it could be None. Default: None.
941 942


943
    Examples:
J
Jiaqi Liu 已提交
944 945
        1. A common example

946
        .. code-block:: python
947
          :name: code-example1
948

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
965

966 967 968 969 970
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
971 972
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
973 974 975 976 977 978 979

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
980 981 982 983 984


        2. An example using mixed precision training.

        .. code-block:: python
985
          :name: code-example2
J
Jiaqi Liu 已提交
986

987 988 989 990
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
991

992 993
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
994

995 996
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
997

998 999
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1010

1011 1012 1013 1014 1015 1016 1017
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1018

1019 1020
    """

1021
    def __init__(self, network, inputs=None, labels=None):
1022
        self.mode = 'train'
1023
        self.network = network
1024 1025
        self._inputs = None
        self._labels = None
1026
        self._loss = None
1027 1028
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1029
        self._input_info = None
1030
        self._is_shape_inferred = False
1031
        self._test_dataloader = None
L
LiuChiachi 已提交
1032
        self.stop_training = False
1033

J
Jiabin Yang 已提交
1034
        if not _non_static_mode():
1035
            if not isinstance(inputs, (list, tuple, dict, Input)):
1036
                raise TypeError(
1037 1038
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1039
        elif inputs:
L
LiuChiachi 已提交
1040
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1041

1042
        self._inputs = self._verify_spec(inputs, is_input=True)
1043
        self._labels = self._verify_spec(labels)
1044

1045
        # init backend
J
Jiabin Yang 已提交
1046
        if fluid._non_static_mode():
1047 1048 1049 1050
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1051
    def train_batch(self, inputs, labels=None, update=True):
1052
        """
L
lyuwenyu 已提交
1053 1054
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1055 1056

        Args:
1057 1058
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1059
                tensors (in case the model has multiple inputs).
1060 1061 1062
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1063 1064 1065
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1066 1067 1068 1069 1070 1071 1072 1073 1074

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1098
        """
L
lyuwenyu 已提交
1099
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1100
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1101
            self._update_inputs()
1102
        return loss
1103

1104
    @paddle.no_grad()
1105 1106 1107 1108 1109
    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
1110 1111
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1112
                tensors (in case the model has multiple inputs).
1113 1114 1115
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1116
                set None. Default: None.
1117 1118 1119 1120 1121 1122 1123 1124 1125

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1150
        """
1151
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1152
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1153
            self._update_inputs()
1154
        return loss
1155

1156
    @paddle.no_grad()
1157
    def predict_batch(self, inputs):
1158
        """
1159
        Run one predicting step on a batch of data.
1160 1161

        Args:
1162 1163
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1164
                tensors (in case the model has multiple inputs).
1165 1166 1167 1168 1169 1170 1171 1172

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1173 1174 1175 1176 1177 1178

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1197
        """
1198
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1199
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1200
            self._update_inputs()
1201
        return loss
1202

1203
    def save(self, path, training=True):
1204 1205
        """
        This function saves parameters, optimizer information or model and
1206 1207
        paramters only for inference to path. It depends on the parameter
        `training`.
1208

1209
        If `training` is set to True, the parameters saved contain all
1210
        the trainable Variable, will save to a file with suffix ".pdparams".
1211 1212 1213 1214
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1215
        This function will silently overwrite existing file at the target location.
1216

1217
        If `training` is set to False, only inference model will be saved.
1218 1219

        Args:
1220 1221 1222
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1223 1224
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1225 1226 1227 1228 1229 1230 1231

        Returns:
            None

        Examples:

            .. code-block:: python
1232

1233
                import paddle
1234
                import paddle.nn as nn
1235
                import paddle.vision.transforms as T
1236
                from paddle.static import InputSpec
1237

1238
                class Mnist(nn.Layer):
1239
                    def __init__(self):
1240
                        super(Mnist, self).__init__()
1241
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1242
                            nn.Flatten(1),
1243 1244 1245 1246
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1247

1248
                    def forward(self, x):
1249
                        return self.net(x)
1250

1251
                dynamic = True  # False
1252
                # if use static graph, do not set
1253 1254
                if not dynamic:
                    paddle.enable_static()
1255

1256 1257 1258
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1259
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1260
                    parameters=model.parameters())
1261
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1262

1263 1264 1265 1266 1267
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
1268

1269
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1270 1271
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1272
        """
1273

1274
        if ParallelEnv().local_rank == 0:
1275 1276 1277 1278
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1297
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1298 1299
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1300 1301
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1302 1303
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1304
                a optimizer has been set to the model. Default: False.
1305 1306 1307 1308 1309 1310 1311

        Returns:
            None

        Examples:

            .. code-block:: python
1312 1313 1314 1315

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1316

1317
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1318

1319
                input = InputSpec([None, 784], 'float32', 'x')
1320

1321 1322 1323 1324 1325
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1326

1327 1328
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1329 1330 1331 1332 1333 1334
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1335
                return pickle.load(f, encoding='latin1')
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
                    "{} is not found in the providing file.".format(key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
            assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
                    "Unknown postfix {} from weights".format(ext)
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1359
        for key, param in self.network.state_dict().items():
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
                        ("Skip loading for {}. ".format(key) + str(err)))
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

        optim_state = None if reset_optimizer else _load_state_from_path(
            path + ".pdopt")
L
Leo Chen 已提交
1374 1375

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1376
        if _non_static_mode():
L
Leo Chen 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

            return self._adapter.load(matched_param_state, optim_state,
                                      scaler_state)
        else:
            return self._adapter.load(matched_param_state, optim_state)
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1398

1399 1400 1401
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1402

1403
                input = InputSpec([None, 784], 'float32', 'x')
1404

1405 1406 1407 1408
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1409

1410
                params = model.parameters()
1411 1412 1413
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1414
    def _prepare_amp(self, amp_configs):
1415

J
Jiaqi Liu 已提交
1416 1417
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1418 1419 1420 1421
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
                assert isinstance(self._optimizer._grad_clip, (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm)), \
                     "Only GradientClipByNorm and GradientClipByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'.")
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'.")
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1451
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
                    'custom_white_list', 'custom_black_list',
                    'custom_black_varnames'
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
                        param_name]
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1479 1480
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized."
                    .format(tuple(amp_config_key_set - accepted_param_set)))
J
Jiaqi Liu 已提交
1481 1482

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1483
                if _non_static_mode():
J
Jiaqi Liu 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
                    raise ValueError(
                        "'use_fp16_guard' is supported in static mode only.")
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1495 1496 1497 1498
    def prepare(self,
                optimizer=None,
                loss=None,
                metrics=None,
J
Jiaqi Liu 已提交
1499
                amp_configs=None):
1500 1501 1502 1503
        """
        Configures the model before runing.

        Args:
1504
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1505
                and should be a Optimizer instance. It can be None in eval
1506 1507
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1508
                be a `paddle.nn.Layer` instance or any callable function
1509
                taken the predicted values and ground truth values as input.
1510 1511 1512 1513
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1514 1515 1516
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1517 1518
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1519 1520 1521 1522
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1523 1524 1525 1526 1527 1528
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1529

1530 1531 1532
        Returns:
            None
        """
1533 1534
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1535 1536
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
J
Jiabin Yang 已提交
1537
                if fluid._non_static_mode():
1538 1539 1540 1541
                    main_prog_seed = fluid.default_main_program().random_seed
                    startup_prog_seed = fluid.default_startup_program(
                    ).random_seed
                    fluid.disable_dygraph()
1542
                    paddle.disable_static(self._place)
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
                    fluid.default_startup_program(
                    ).random_seed = startup_prog_seed
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1553 1554
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1555 1556 1557
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1558
        self._loss = loss
1559 1560 1561 1562 1563 1564 1565

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1566
        self._prepare_amp(amp_configs)
1567

L
Leo Chen 已提交
1568
        self._adapter.prepare()
1569

1570
    def fit(self,
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
            train_data=None,
            eval_data=None,
            batch_size=1,
            epochs=1,
            eval_freq=1,
            log_freq=10,
            save_dir=None,
            save_freq=1,
            verbose=2,
            drop_last=False,
            shuffle=True,
            num_workers=0,
L
update  
lyuwenyu 已提交
1583
            callbacks=None,
1584 1585
            accumulate_grad_batches=1,
            num_iters=None):
1586 1587 1588 1589 1590
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1591 1592
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for
                train. An instance of paddle paddle.io.Dataset or
1593
                paddle.io.Dataloader is recomended. Default: None.
1594
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1595 1596
                evaluation at the end of epoch. If None, will not do evaluation.
                An instance of paddle.io.Dataset or paddle.io.Dataloader
1597
                is recomended. Default: None.
1598
            batch_size (int, optional): The batch size of train_data and eval_data. When
1599 1600 1601 1602
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1603
                is performed. Default: 1.
1604
            log_freq (int, optional): The frequency, in number of steps, the training logs
1605
                are printed. Default: 10.
1606
            save_dir(str|None, optional): The directory to save checkpoint during training.
1607
                If None, will not save checkpoint. Default: None.
1608
            save_freq (int, optional): The frequency, in number of epochs, to save
1609
                checkpoint. Default: 1.
1610
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1611
                1 = progress bar, 2 = one line per epoch. Default: 2.
1612
            drop_last (bool, optional): Whether drop the last incomplete batch of
1613 1614 1615
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1616
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1617 1618
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1619
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1620 1621 1622
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1623 1624 1625
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
1626
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident
L
lyuwenyu 已提交
1627
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1628
                size. Default: 1.
1629 1630 1631 1632
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1633 1634 1635 1636
        Returns:
            None

        Examples:
1637
            1. An example use Dataset and set batch size, shuffle in fit.
1638 1639 1640
               How to make a batch is done internally.

            .. code-block:: python
1641
              :name: code-example1
1642

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1676 1677 1678 1679 1680

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1681
              :name: code-example2
1682 1683 1684 1685 1686

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1687

1688 1689 1690
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1705

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1718 1719 1720 1721 1722
        """
        assert train_data is not None, \
                "train_data must be given!"

        if isinstance(train_data, Dataset):
1723 1724 1725 1726 1727 1728 1729 1730 1731
            train_sampler = DistributedBatchSampler(train_data,
                                                    batch_size=batch_size,
                                                    shuffle=shuffle,
                                                    drop_last=drop_last)
            train_loader = DataLoader(train_data,
                                      batch_sampler=train_sampler,
                                      places=self._place,
                                      num_workers=num_workers,
                                      return_list=True)
1732 1733 1734 1735
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1736 1737 1738 1739 1740 1741 1742
            eval_sampler = DistributedBatchSampler(eval_data,
                                                   batch_size=batch_size)
            eval_loader = DataLoader(eval_data,
                                     batch_sampler=eval_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1743 1744 1745 1746 1747 1748 1749
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1750

L
lyuwenyu 已提交
1751
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1752

1753
        steps = self._len_data_loader(train_loader)
1754
        self.num_iters = num_iters
1755 1756
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                steps, int):
1757 1758 1759
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1760 1761 1762 1763 1764 1765 1766 1767 1768
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1769 1770
            metrics=self._metrics_name(),
        )
1771

L
LiuChiachi 已提交
1772 1773 1774
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
                cbks.on_begin('eval', {
                    'steps': eval_steps,
                    'metrics': self._metrics_name()
                })

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1792 1793
            if self.stop_training:
                break
1794 1795 1796

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1797

1798 1799 1800 1801 1802 1803 1804 1805
    def evaluate(self,
                 eval_data,
                 batch_size=1,
                 log_freq=10,
                 verbose=2,
                 num_workers=0,
                 callbacks=None,
                 num_iters=None):
1806 1807 1808 1809 1810
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
1811
                evaluation. An instance of paddle.io.Dataset or
1812
                paddle.io.Dataloader is recomended.
1813 1814 1815 1816
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
1817
                are printed. Default: 10.
1818
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1819
                1 = progress bar, 2 = one line per epoch. Default: 2.
1820
            num_workers (int, optional): The number of subprocess to load data,
1821 1822 1823
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
1824
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1825 1826
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1827 1828 1829
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
1830 1831 1832 1833 1834
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1835 1836

          .. code-block:: python
1837

1838 1839 1840
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
1841

1842 1843 1844 1845 1846 1847
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1848

1849 1850 1851 1852 1853 1854 1855
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
1856 1857 1858
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
1859 1860 1861 1862 1863 1864 1865
            eval_sampler = DistributedBatchSampler(eval_data,
                                                   batch_size=batch_size)
            eval_loader = DataLoader(eval_data,
                                     batch_sampler=eval_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
1876 1877
            metrics=self._metrics_name(),
        )
1878 1879

        eval_steps = self._len_data_loader(eval_loader)
1880
        self.num_iters = num_iters
1881 1882
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                eval_steps, int):
1883 1884 1885
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
1886 1887 1888 1889
        cbks.on_begin('eval', {
            'steps': eval_steps,
            'metrics': self._metrics_name()
        })
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

    def predict(self,
                test_data,
                batch_size=1,
                num_workers=0,
                stack_outputs=False,
1908
                verbose=1,
1909 1910 1911 1912 1913 1914 1915 1916
                callbacks=None):
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
1917 1918
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
1919
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess
1920 1921 1922 1923
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
1924
                output field will be in shape [N, X, Y] if stack_output is True, and will
1925
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
1926 1927
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
1928
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1929
                1 = progress bar, 2 = one line per batch. Default: 1.
1930
            callbacks(Callback, optional): A Callback instance, Default: None.
1931

1932 1933 1934 1935
        Returns:
            list: output of models.

        Examples:
1936 1937

          .. code-block:: python
1938

1939 1940 1941
                import numpy as np
                import paddle
                from paddle.static import InputSpec
1942

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
                        super(MnistDataset, self).__init__(mode=mode)
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
1977 1978 1979
        """

        if test_data is not None and isinstance(test_data, Dataset):
1980 1981 1982 1983 1984 1985 1986
            test_sampler = DistributedBatchSampler(test_data,
                                                   batch_size=batch_size)
            test_loader = DataLoader(test_data,
                                     batch_sampler=test_sampler,
                                     places=self._place,
                                     num_workers=num_workers,
                                     return_list=True)
1987 1988 1989 1990 1991
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

1992
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
1993 1994 1995 1996

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

1997
        cbks.on_begin('predict', logs)
1998 1999 2000

        outputs = []

2001
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2012
        cbks.on_end('predict', logs)
2013 2014
        return outputs

2015
    def _save_inference_model(self, path):
2016
        """
2017
        Save inference model can be used in static or dynamic mode.
2018 2019

        Args:
2020 2021
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2022
        Returns:
2023
            None
2024 2025
        """

J
Jiabin Yang 已提交
2026
        if fluid._non_static_mode():
2027 2028
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2029
                if self._input_info is None:  # No provided or inferred
2030
                    raise RuntimeError(
L
LiuChiachi 已提交
2031
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2032 2033 2034 2035
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
L
LiuChiachi 已提交
2036 2037
                        % self._input_info[0])

2038
                paddle.jit.save(layer, path, input_spec=self._inputs)
2039

2040
        else:
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
                    "file_prefix is empty string.")

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2057 2058 2059 2060 2061 2062 2063 2064 2065
            prog = self._adapter._progs.get('test', None)
            assert prog, \
                "Model is not ready, please call `model.prepare()` first"

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2066 2067 2068 2069 2070 2071 2072
            fluid.io.save_inference_model(model_path,
                                          input_names,
                                          endpoints,
                                          self._adapter._executor,
                                          main_program=infer_prog,
                                          model_filename=model_filename,
                                          params_filename=params_filename)
2073

L
update  
lyuwenyu 已提交
2074
    def _run_one_epoch(
2075 2076 2077 2078 2079 2080
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2091
            # 4. custumed iterator yield separated inputs and labels:
2092 2093 2094 2095 2096
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2097

2098 2099
            batch_size = data[0].shape()[0] if callable(
                data[0].shape) else data[0].shape[0]
2100 2101 2102

            callbacks.on_batch_begin(mode, step, logs)

2103
            if mode != 'predict':
L
lyuwenyu 已提交
2104 2105
                _inputs = [data[:len(self._inputs)], data[len(self._inputs):]]
                if mode == 'train':
2106 2107
                    _inputs.append((step + 1) % self._accumulate == 0
                                   or step + 1 == len(data_loader))
L
update  
lyuwenyu 已提交
2108

L
lyuwenyu 已提交
2109
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2110

2111
                if self._metrics and self._loss:
2112
                    metrics = [[l[0] for l in outs[0]]]
2113
                elif self._loss:
2114 2115 2116
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2127
                if self._inputs is not None:
2128
                    outs = self.predict_batch(data[:len(self._inputs)])
L
LielinJiang 已提交
2129
                else:
2130
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2131

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
                outputs.append(outs)

            logs['step'] = step
            if mode == 'train' or self._adapter._merge_count.get(
                    mode + '_batch', 0) <= 0:
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2142 2143
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2144 2145 2146
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2147
                    break
2148 2149
        self._reset_metrics()

2150
        if mode == 'predict':
2151 2152 2153
            return logs, outputs
        return logs

L
LielinJiang 已提交
2154
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2155 2156 2157
        """Prints a string summary of the network.

        Args:
2158 2159 2160 2161
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor.
                    if not set, input_size will get from ``self._inputs`` if network only have
                    one input, input_size can be tuple or InputSpec. if model have multiple
                    input, input_size must be a list which contain every input's shape.
L
LielinJiang 已提交
2162
                    Default: None.
2163
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2164 2165 2166 2167 2168 2169

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2170 2171 2172 2173 2174 2175

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2176

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2188 2189

        """
2190 2191
        assert (input_size is not None or self._inputs
                is not None), "'input_size' or 'self._input' must be set"
2192 2193 2194 2195
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2196
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2197

L
LiuChiachi 已提交
2198
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2199 2200
        out_specs = []

2201 2202 2203 2204 2205 2206
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2207
                # While Saving inference model in dygraph, and providing inputs only in running.
J
Jiabin Yang 已提交
2208
                if shapes is not None and dtypes is not None and fluid._non_static_mode(
L
LiuChiachi 已提交
2209
                ):
2210
                    out_specs = [
2211
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2212 2213 2214 2215 2216 2217 2218
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2219 2220 2221 2222 2223
            assert is_input is False
            out_specs = [
                specs[n] for n in extract_args(self.network.forward)
                if n != 'self'
            ]
2224 2225 2226 2227 2228 2229 2230 2231
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2232 2233
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
2234 2235 2236

        return out_specs

2237 2238 2239 2240 2241
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2242
        metrics_name = ['loss'] if self._loss else []
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2253 2254 2255

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2256 2257 2258 2259 2260
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
            self._inputs = self._verify_spec(None, self._input_info[0],
                                             self._input_info[1], True)
            self._is_shape_inferred = True