test_pad3d_op.py 24.4 KB
Newer Older
L
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.fluid.core as core

from paddle.fluid import Program, program_guard, Executor, default_main_program


class TestPad3dOp(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.value = 0.0
        self.variable_paddings = False
        self.initTestCase()
        self.op_type = "pad3d"
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
        self.attrs = {}
        if self.variable_paddings:
            self.attrs['paddings'] = []
            self.inputs['Paddings'] = np.array(self.paddings).flatten().astype(
                "int32")
        else:
            self.attrs['paddings'] = np.array(self.paddings).flatten().astype(
                "int32")
        self.attrs['value'] = self.value
        self.attrs['mode'] = self.mode
        self.attrs['data_format'] = self.data_format
        if self.data_format == "NCDHW":
            paddings = [
                (0, 0),
                (0, 0),
                (self.paddings[4], self.paddings[5]),
                (self.paddings[2], self.paddings[3]),
                (self.paddings[0], self.paddings[1]),
            ]
        else:
            paddings = [
                (0, 0),
                (self.paddings[4], self.paddings[5]),
                (self.paddings[2], self.paddings[3]),
                (self.paddings[0], self.paddings[1]),
                (0, 0),
            ]
        if self.mode == "constant":
            out = np.pad(self.inputs['X'],
                         paddings,
                         mode=self.mode,
                         constant_values=self.value)
        elif self.mode == "reflect":
            out = np.pad(self.inputs['X'], paddings, mode=self.mode)
        elif self.mode == "replicate":
            out = np.pad(self.inputs['X'], paddings, mode="edge")
        elif self.mode == "circular":
            out = np.pad(self.inputs['X'], paddings, mode="wrap")
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')

    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 0, 0, 0, 0, 0]
        self.mode = "constant"
        self.data_format = "NCDHW"
        self.pad_value = 0.0


class TestCase1(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 4, 5]
        self.mode = "constant"
        self.data_format = "NCDHW"
        self.value = 1.0


class TestCase2(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [1, 1, 1, 1, 1, 1]
        self.mode = "constant"
        self.data_format = "NDHWC"
        self.value = 1.0


class TestCase3(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 1, 0, 2, 3]
        self.mode = "reflect"
        self.data_format = "NCDHW"


class TestCase4(TestPad3dOp):
    def initTestCase(self):
        self.shape = (4, 4, 4, 4, 4)
        self.paddings = [0, 1, 2, 1, 2, 3]
        self.mode = "reflect"
        self.data_format = "NDHWC"


class TestCase5(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 2, 1]
        self.mode = "replicate"
        self.data_format = "NCDHW"


class TestCase6(TestPad3dOp):
    def initTestCase(self):
        self.shape = (4, 4, 4, 4, 4)
        self.paddings = [5, 4, 2, 1, 2, 3]
        self.mode = "replicate"
        self.data_format = "NDHWC"


class TestCase7(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 2, 1]
        self.mode = "circular"
        self.data_format = "NCDHW"


class TestCase8(TestPad3dOp):
    def initTestCase(self):
        self.shape = (4, 4, 4, 4, 4)
        self.paddings = [0, 1, 2, 1, 2, 3]
        self.mode = "circular"
        self.data_format = "NDHWC"


class TestPadAPI(unittest.TestCase):
    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def check_static_result_1(self, place):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            input_shape = (1, 2, 3, 4, 5)
            pad = [1, 2, 1, 1, 3, 4]
            mode = "constant"
            value = 100
            input_data = np.random.rand(*input_shape).astype(np.float32)
168
            x = paddle.fluid.data(name="x", shape=input_shape)
169 170 171 172 173
            result = F.pad(x=x,
                           pad=pad,
                           value=value,
                           mode=mode,
                           data_format="NCDHW")
L
littletomatodonkey 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
            exe = Executor(place)
            fetches = exe.run(default_main_program(),
                              feed={"x": input_data},
                              fetch_list=[result])

            np_out = self._get_numpy_out(input_data, pad, mode, value)
            self.assertTrue(np.allclose(fetches[0], np_out))

    def check_static_result_2(self, place):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            input_shape = (2, 3, 4, 5, 6)
            pad = [1, 2, 1, 1, 1, 2]
            mode = "reflect"
            input_data = np.random.rand(*input_shape).astype(np.float32)
189
            x = paddle.fluid.data(name="x", shape=input_shape)
L
littletomatodonkey 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
            result1 = F.pad(x=x, pad=pad, mode=mode, data_format="NCDHW")
            result2 = F.pad(x=x, pad=pad, mode=mode, data_format="NDHWC")
            exe = Executor(place)
            fetches = exe.run(default_main_program(),
                              feed={"x": input_data},
                              fetch_list=[result1, result2])

            np_out1 = self._get_numpy_out(
                input_data, pad, mode, data_format="NCDHW")
            np_out2 = self._get_numpy_out(
                input_data, pad, mode, data_format="NDHWC")
            self.assertTrue(np.allclose(fetches[0], np_out1))
            self.assertTrue(np.allclose(fetches[1], np_out2))

    def check_static_result_3(self, place):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            input_shape = (2, 3, 4, 5, 6)
            pad = [1, 2, 1, 1, 3, 4]
            mode = "replicate"
            input_data = np.random.rand(*input_shape).astype(np.float32)
211
            x = paddle.fluid.data(name="x", shape=input_shape)
L
littletomatodonkey 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
            result1 = F.pad(x=x, pad=pad, mode=mode, data_format="NCDHW")
            result2 = F.pad(x=x, pad=pad, mode=mode, data_format="NDHWC")
            exe = Executor(place)
            fetches = exe.run(default_main_program(),
                              feed={"x": input_data},
                              fetch_list=[result1, result2])

            np_out1 = self._get_numpy_out(
                input_data, pad, mode, data_format="NCDHW")
            np_out2 = self._get_numpy_out(
                input_data, pad, mode, data_format="NDHWC")
            self.assertTrue(np.allclose(fetches[0], np_out1))
            self.assertTrue(np.allclose(fetches[1], np_out2))

    def check_static_result_4(self, place):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            input_shape = (2, 3, 4, 5, 6)
            pad = [1, 2, 1, 1, 3, 4]
            mode = "circular"
            input_data = np.random.rand(*input_shape).astype(np.float32)
233
            x = paddle.fluid.data(name="x", shape=input_shape)
L
littletomatodonkey 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
            result1 = F.pad(x=x, pad=pad, mode=mode, data_format="NCDHW")
            result2 = F.pad(x=x, pad=pad, mode=mode, data_format="NDHWC")
            exe = Executor(place)
            fetches = exe.run(default_main_program(),
                              feed={"x": input_data},
                              fetch_list=[result1, result2])

            np_out1 = self._get_numpy_out(
                input_data, pad, mode, data_format="NCDHW")
            np_out2 = self._get_numpy_out(
                input_data, pad, mode, data_format="NDHWC")
            self.assertTrue(np.allclose(fetches[0], np_out1))
            self.assertTrue(np.allclose(fetches[1], np_out2))

    def _get_numpy_out(self,
                       input_data,
                       pad,
                       mode,
                       value=0,
                       data_format="NCDHW"):
        if data_format == "NCDHW":
            pad = [
                (0, 0),
                (0, 0),
                (pad[4], pad[5]),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
            ]
        elif data_format == "NDHWC":
            pad = [
                (0, 0),
                (pad[4], pad[5]),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
                (0, 0),
            ]
        elif data_format == "NCHW":
            pad = [
                (0, 0),
                (0, 0),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
            ]
        elif data_format == "NHWC":
            pad = [
                (0, 0),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
                (0, 0),
            ]
        elif data_format == "NCL":
            pad = [
                (0, 0),
                (0, 0),
                (pad[0], pad[1]),
            ]
        elif data_format == "NLC":
            pad = [
                (0, 0),
                (pad[0], pad[1]),
                (0, 0),
            ]

        if mode == "constant":
            out = np.pad(input_data, pad, mode=mode, constant_values=value)
        elif mode == "reflect":
            out = np.pad(input_data, pad, mode=mode)
        elif mode == "replicate":
            out = np.pad(input_data, pad, mode="edge")
        elif mode == "circular":
            out = np.pad(input_data, pad, mode="wrap")

        return out

    def test_static(self):
        for place in self.places:
            self.check_static_result_1(place=place)
            self.check_static_result_2(place=place)
            self.check_static_result_3(place=place)
            self.check_static_result_4(place=place)

    def test_dygraph_1(self):
        paddle.disable_static()
        input_shape = (1, 2, 3, 4, 5)
        pad = [1, 2, 1, 1, 3, 4]
        mode = "constant"
        value = 100
        input_data = np.random.rand(*input_shape).astype(np.float32)
        np_out1 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NCDHW")
        np_out2 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NDHWC")
        tensor_data = paddle.to_tensor(input_data)

        y1 = F.pad(tensor_data,
                   pad=pad,
                   mode=mode,
                   value=value,
                   data_format="NCDHW")
        y2 = F.pad(tensor_data,
                   pad=pad,
                   mode=mode,
                   value=value,
                   data_format="NDHWC")

        self.assertTrue(np.allclose(y1.numpy(), np_out1))
        self.assertTrue(np.allclose(y2.numpy(), np_out2))

    def test_dygraph_2(self):
        paddle.disable_static()
        input_shape = (2, 3, 4, 5)
        pad = [1, 1, 3, 4]
        mode = "constant"
        value = 100
        input_data = np.random.rand(*input_shape).astype(np.float32)
        np_out1 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NCHW")
        np_out2 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NHWC")

        tensor_data = paddle.to_tensor(input_data)
        tensor_pad = paddle.to_tensor(pad, dtype="int32")

        y1 = F.pad(tensor_data,
                   pad=tensor_pad,
                   mode=mode,
                   value=value,
                   data_format="NCHW")
        y2 = F.pad(tensor_data,
                   pad=tensor_pad,
                   mode=mode,
                   value=value,
                   data_format="NHWC")

        self.assertTrue(np.allclose(y1.numpy(), np_out1))
        self.assertTrue(np.allclose(y2.numpy(), np_out2))

    def test_dygraph_3(self):
        paddle.disable_static()
        input_shape = (3, 4, 5)
        pad = [3, 4]
        mode = "constant"
        value = 100
        input_data = np.random.rand(*input_shape).astype(np.float32)
        np_out1 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NCL")
        np_out2 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NLC")
        tensor_data = paddle.to_tensor(input_data)
        tensor_pad = paddle.to_tensor(pad, dtype="int32")

        y1 = F.pad(tensor_data,
                   pad=tensor_pad,
                   mode=mode,
                   value=value,
                   data_format="NCL")
        y2 = F.pad(tensor_data,
                   pad=tensor_pad,
                   mode=mode,
                   value=value,
                   data_format="NLC")

        self.assertTrue(np.allclose(y1.numpy(), np_out1))
        self.assertTrue(np.allclose(y2.numpy(), np_out2))


class TestPad1dAPI(unittest.TestCase):
    def _get_numpy_out(self,
                       input_data,
                       pad,
                       mode,
                       value=0.0,
                       data_format="NCL"):
        if data_format == "NCL":
            pad = [
                (0, 0),
                (0, 0),
                (pad[0], pad[1]),
            ]
        else:
            pad = [
                (0, 0),
                (pad[0], pad[1]),
                (0, 0),
            ]

        if mode == "constant":
            out = np.pad(input_data, pad, mode=mode, constant_values=value)
        elif mode == "reflect":
            out = np.pad(input_data, pad, mode=mode)
        elif mode == "replicate":
            out = np.pad(input_data, pad, mode="edge")
L
littletomatodonkey 已提交
426 427
        elif mode == "circular":
            out = np.pad(input_data, pad, mode="wrap")
L
littletomatodonkey 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

        return out

    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def test_class(self):
        paddle.disable_static()
        for place in self.places:
            input_shape = (3, 4, 5)
            pad = [1, 2]
            value = 100
            input_data = np.random.rand(*input_shape).astype(np.float32)

L
littletomatodonkey 已提交
444 445 446 447
            pad_reflection = nn.Pad1D(padding=pad, mode="reflect")
            pad_replication = nn.Pad1D(padding=pad, mode="replicate")
            pad_constant = nn.Pad1D(padding=pad, mode="constant", value=value)
            pad_circular = nn.Pad1D(padding=pad, mode="circular")
L
littletomatodonkey 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

            data = paddle.to_tensor(input_data)

            output = pad_reflection(data)
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NCL")
            self.assertTrue(np.allclose(output.numpy(), np_out))

            output = pad_replication(data)
            np_out = self._get_numpy_out(
                input_data, pad, "replicate", data_format="NCL")
            self.assertTrue(np.allclose(output.numpy(), np_out))

            output = pad_constant(data)
            np_out = self._get_numpy_out(
                input_data, pad, "constant", value=value, data_format="NCL")
            self.assertTrue(np.allclose(output.numpy(), np_out))

L
littletomatodonkey 已提交
466 467 468 469 470
            output = pad_circular(data)
            np_out = self._get_numpy_out(
                input_data, pad, "circular", value=value, data_format="NCL")
            self.assertTrue(np.allclose(output.numpy(), np_out))

L
littletomatodonkey 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

class TestPad2dAPI(unittest.TestCase):
    def _get_numpy_out(self,
                       input_data,
                       pad,
                       mode,
                       value=0.0,
                       data_format="NCHW"):
        if data_format == "NCHW":
            pad = [
                (0, 0),
                (0, 0),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
            ]
        else:
            pad = [
                (0, 0),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
                (0, 0),
            ]

        if mode == "constant":
            out = np.pad(input_data, pad, mode=mode, constant_values=value)
        elif mode == "reflect":
            out = np.pad(input_data, pad, mode=mode)
        elif mode == "replicate":
            out = np.pad(input_data, pad, mode="edge")
L
littletomatodonkey 已提交
500 501
        elif mode == "circular":
            out = np.pad(input_data, pad, mode="wrap")
L
littletomatodonkey 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

        return out

    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def test_class(self):
        paddle.disable_static()
        for place in self.places:
            input_shape = (3, 4, 5, 6)
            pad = [1, 2, 2, 1]
            value = 100
            input_data = np.random.rand(*input_shape).astype(np.float32)

L
littletomatodonkey 已提交
518 519 520 521
            pad_reflection = nn.Pad2D(padding=pad, mode="reflect")
            pad_replication = nn.Pad2D(padding=pad, mode="replicate")
            pad_constant = nn.Pad2D(padding=pad, mode="constant", value=value)
            pad_circular = nn.Pad2D(padding=pad, mode="circular")
L
littletomatodonkey 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

            data = paddle.to_tensor(input_data)

            output = pad_reflection(data)
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NCHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

            output = pad_replication(data)
            np_out = self._get_numpy_out(
                input_data, pad, "replicate", data_format="NCHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

            output = pad_constant(data)
            np_out = self._get_numpy_out(
                input_data, pad, "constant", value=value, data_format="NCHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

L
littletomatodonkey 已提交
540
            output = pad_circular(data)
L
littletomatodonkey 已提交
541
            np_out = self._get_numpy_out(
L
littletomatodonkey 已提交
542
                input_data, pad, "circular", data_format="NCHW")
L
littletomatodonkey 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
            self.assertTrue(np.allclose(output.numpy(), np_out))


class TestPad3dAPI(unittest.TestCase):
    def _get_numpy_out(self,
                       input_data,
                       pad,
                       mode,
                       value=0.0,
                       data_format="NCDHW"):
        if data_format == "NCDHW":
            pad = [
                (0, 0),
                (0, 0),
                (pad[4], pad[5]),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
            ]
        else:
            pad = [
                (0, 0),
                (pad[4], pad[5]),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
                (0, 0),
            ]

        if mode == "constant":
            out = np.pad(input_data, pad, mode=mode, constant_values=value)
        elif mode == "reflect":
            out = np.pad(input_data, pad, mode=mode)
        elif mode == "replicate":
            out = np.pad(input_data, pad, mode="edge")
L
littletomatodonkey 已提交
576 577
        elif mode == "circular":
            out = np.pad(input_data, pad, mode="wrap")
L
littletomatodonkey 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

        return out

    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def test_class(self):
        paddle.disable_static()
        for place in self.places:
            input_shape = (3, 4, 5, 6, 7)
            pad = [1, 2, 2, 1, 1, 0]
            value = 100
            input_data = np.random.rand(*input_shape).astype(np.float32)

L
littletomatodonkey 已提交
594 595 596 597
            pad_reflection = nn.Pad3D(padding=pad, mode="reflect")
            pad_replication = nn.Pad3D(padding=pad, mode="replicate")
            pad_constant = nn.Pad3D(padding=pad, mode="constant", value=value)
            pad_circular = nn.Pad3D(padding=pad, mode="circular")
L
littletomatodonkey 已提交
598 599 600

            data = paddle.to_tensor(input_data)

L
littletomatodonkey 已提交
601 602 603 604 605
            output = pad_reflection(data)
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NCDHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

L
littletomatodonkey 已提交
606 607 608 609 610 611 612 613 614 615
            output = pad_replication(data)
            np_out = self._get_numpy_out(
                input_data, pad, "replicate", data_format="NCDHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

            output = pad_constant(data)
            np_out = self._get_numpy_out(
                input_data, pad, "constant", value=value, data_format="NCDHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

L
littletomatodonkey 已提交
616 617 618 619 620
            output = pad_circular(data)
            np_out = self._get_numpy_out(
                input_data, pad, "circular", data_format="NCDHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

L
littletomatodonkey 已提交
621 622 623 624 625 626 627 628 629 630 631

class TestPad3dOpError(unittest.TestCase):
    def test_errors(self):
        def test_variable():
            input_shape = (1, 2, 3, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
            F.pad(x=data, paddings=[1, 1, 1, 1, 1, 1])

        def test_reflect_1():
            input_shape = (1, 2, 3, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
632
            x = paddle.fluid.data(name="x", shape=input_shape)
L
littletomatodonkey 已提交
633 634 635 636 637 638 639 640
            y = F.pad(x, pad=[5, 6, 1, 1, 1, 1], value=1, mode='reflect')
            place = paddle.CPUPlace()
            exe = Executor(place)
            outputs = exe.run(feed={'x': data}, fetch_list=[y.name])

        def test_reflect_2():
            input_shape = (1, 2, 3, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
641
            x = paddle.fluid.data(name="x", shape=input_shape)
L
littletomatodonkey 已提交
642 643 644 645 646 647 648 649
            y = F.pad(x, pad=[1, 1, 4, 3, 1, 1], value=1, mode='reflect')
            place = paddle.CPUPlace()
            exe = Executor(place)
            outputs = exe.run(feed={'x': data}, fetch_list=[y.name])

        def test_reflect_3():
            input_shape = (1, 2, 3, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
650
            x = paddle.fluid.data(name="x", shape=input_shape)
L
littletomatodonkey 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664
            y = F.pad(x, pad=[1, 1, 1, 1, 2, 3], value=1, mode='reflect')
            place = paddle.CPUPlace()
            exe = Executor(place)
            outputs = exe.run(feed={'x': data}, fetch_list=[y.name])

        self.assertRaises(TypeError, test_variable)

        self.assertRaises(Exception, test_reflect_1)

        self.assertRaises(Exception, test_reflect_2)

        self.assertRaises(Exception, test_reflect_3)


665 666 667 668 669 670 671
class TestPadDataformatError(unittest.TestCase):
    def test_errors(self):
        def test_ncl():
            input_shape = (1, 2, 3, 4)
            pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
            data = np.arange(
                np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1
L
littletomatodonkey 已提交
672
            my_pad = nn.Pad1D(padding=pad, mode="replicate", data_format="NCL")
673 674 675 676 677 678 679 680
            data = paddle.to_tensor(data)
            result = my_pad(data)

        def test_nchw():
            input_shape = (1, 2, 4)
            pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
            data = np.arange(
                np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1
L
littletomatodonkey 已提交
681
            my_pad = nn.Pad1D(padding=pad, mode="replicate", data_format="NCHW")
682 683 684 685 686 687 688 689
            data = paddle.to_tensor(data)
            result = my_pad(data)

        def test_ncdhw():
            input_shape = (1, 2, 3, 4)
            pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
            data = np.arange(
                np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1
L
littletomatodonkey 已提交
690 691
            my_pad = nn.Pad1D(
                padding=pad, mode="replicate", data_format="NCDHW")
692 693 694 695 696 697 698 699 700 701
            data = paddle.to_tensor(data)
            result = my_pad(data)

        self.assertRaises(AssertionError, test_ncl)

        self.assertRaises(AssertionError, test_nchw)

        self.assertRaises(AssertionError, test_ncdhw)


L
littletomatodonkey 已提交
702 703
if __name__ == '__main__':
    unittest.main()