operator.cc 135.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18
#include <unordered_set>
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/raw_tensor.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
29
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/var_type.h"
31
#include "paddle/fluid/operators/isfinite_op.h"
32
#include "paddle/fluid/operators/ops_extra_info.h"
33
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
34
#include "paddle/fluid/platform/enforce.h"
35
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
36
#include "paddle/fluid/platform/profiler/event_tracing.h"
37
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
38
#include "paddle/phi/common/int_array.h"
39
#include "paddle/phi/common/scalar.h"
40
#include "paddle/phi/core/compat/get_kerneltype_forvar_utils.h"
41
#include "paddle/phi/core/ddim.h"
42
#include "paddle/phi/core/kernel_context.h"
43 44
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
45

46
namespace phi {
47
class DenseTensor;
48
}  // namespace phi
49

50
#ifdef PADDLE_WITH_XPU
51 52
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
53
#endif
Q
Qiao Longfei 已提交
54

55 56
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
57
#include "paddle/fluid/platform/mkldnn_op_list.h"
58 59
#endif

F
fwenguang 已提交
60 61 62 63
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

64 65 66 67
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#endif

D
dzhwinter 已提交
68
DECLARE_bool(benchmark);
69
DECLARE_bool(check_nan_inf);
70
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
71
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
72
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
73

Q
Qiao Longfei 已提交
74 75 76
namespace paddle {
namespace framework {

77 78 79 80 81 82
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
83

84
static DDim GetDimsDebug(const Scope& scope,
85
                         const std::string& name,
86
                         bool get_actual_dim = false) {
87
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
88 89
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
90 91
  }

92 93
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
94
    return tensor.dims();
95
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
96
    if (get_actual_dim) {
97
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
98
    } else {
99
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
100
    }
S
Steffy-zxf 已提交
101 102
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
103 104 105 106 107
  } else {
    return DDim({-1});
  }
}

108
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
109 110 111 112 113
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

114
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
115 116 117 118
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
119

120 121
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
122
    if (UNLIKELY(!tensor.IsInitialized())) {
123 124
      return "";
    }
125
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
126 127
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
128 129 130
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
131
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
132
    }
S
Steffy-zxf 已提交
133 134
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
135 136 137 138 139
  } else {
    return "";
  }
}

140
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
141 142 143 144 145 146 147 148 149 150
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

151 152
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
153 154 155 156
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
157 158
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
159 160 161 162 163 164 165 166 167 168
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

169
static int GetRowSize(const Scope& scope, const std::string& name) {
170 171 172 173 174
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

175 176
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
177 178 179 180 181
  }

  return -1;
}

182
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
183 184 185 186 187 188 189
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

190 191
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
192
    return tensor.lod();
Q
Qiao Longfei 已提交
193 194 195 196 197
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
198 199 200 201 202
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
203
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
204 205 206 207 208 209
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
210
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
211 212 213 214 215 216
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
RuntimeInferShapeContext::RuntimeInferShapeContext(const OperatorBase& op,
                                                   const RuntimeContext& ctx)
    : op_(op), ctx_(ctx) {}

bool RuntimeInferShapeContext::HasInput(const std::string& name) const {
  // has only one input
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end()) {
    return false;
  }
  const auto& in = it->second;
  if (in.size() == 0) return false;
  PADDLE_ENFORCE_EQ(
      in.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input %s should not contain more than one inputs.", name));
  return in[0] != nullptr;
}

bool RuntimeInferShapeContext::HasOutput(const std::string& name) const {
  // has only one output
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end()) {
    return false;
  }
  const auto& out = it->second;
  if (out.size() == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(
      out.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Output %s should not contain more than one outputs.", name));
  return out[0] != nullptr;
}

bool RuntimeInferShapeContext::HasAttr(const std::string& name) const {
  return op_.HasAttr(name);
}

bool RuntimeInferShapeContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (auto& input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

bool RuntimeInferShapeContext::HasOutputs(const std::string& name,
                                          bool allow_null) const {
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end() || it->second.empty()) {
    return false;
  }
  if (!allow_null) {
    for (auto& output : it->second) {
      if (output == nullptr) return false;
    }
  }
  return true;
}

AttrReader RuntimeInferShapeContext::Attrs() const {
  return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
}

std::vector<std::string> RuntimeInferShapeContext::Inputs(
    const std::string& name) const {
  return op_.Inputs(name);
}

std::vector<std::string> RuntimeInferShapeContext::Outputs(
    const std::string& name) const {
  return op_.Outputs(name);
}

std::string RuntimeInferShapeContext::GetInputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->inputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->inputs().size()));
  return op_proto->inputs()[idx].name();
}

std::string RuntimeInferShapeContext::GetOutputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->outputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of outputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->outputs().size()));
  return op_proto->outputs()[idx].name();
}

void RuntimeInferShapeContext::ShareDim(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second[i];
  Variable* out_var = out_it->second[j];

  PADDLE_ENFORCE_EQ(
      in_var->Type(),
      out_var->Type(),
      platform::errors::InvalidArgument(
          "The type of input (%s) and output (%s) are inconsistent.", in, out));

  if (in_var->IsType<phi::SelectedRows>()) {
    auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
    auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
    out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
    out_sele_rows->set_rows(in_sele_rows.rows());
    out_sele_rows->set_height(in_sele_rows.height());
  } else if (in_var->IsType<phi::DenseTensor>()) {
    auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_lod_tensor->Resize(in_lod_tensor.dims());
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Currently, the input type of ShareDim only can be phi::DenseTensor "
        "or SelectedRows."));
  }
}

void RuntimeInferShapeContext::ShareAllLoD(const std::string& in,
                                           const std::string& out) const {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound(
                        "Input [%s] found error in Op [%s]", in, op_.Type()));
  PADDLE_ENFORCE_NE(out_it,
                    ctx_.outputs.end(),
                    platform::errors::NotFound(
                        "Output [%s] found error in Op [%s]", out, op_.Type()));

  auto& in_var_list = in_it->second;
  auto& out_var_list = out_it->second;

  PADDLE_ENFORCE_EQ(
      in_var_list.size(),
      out_var_list.size(),
      platform::errors::PreconditionNotMet(
          "Op [%s]: Input var size should be equal with output var size",
          op_.Type()));

  auto& out_var_names = op_.Outputs(out);

  for (size_t i = 0; i < in_var_list.size(); ++i) {
    if (out_var_names[i] == framework::kEmptyVarName) {
      continue;
    }

    Variable* in_var = in_var_list[i];
    if (!in_var->IsType<phi::DenseTensor>()) return;
    Variable* out_var = out_var_list[i];
    PADDLE_ENFORCE_EQ(
        out_var->IsType<phi::DenseTensor>(),
        true,
        platform::errors::PreconditionNotMet(
            "The %d-th output of Output(%s) must be phi::DenseTensor.",
            i,
            out_var_names[i]));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
    if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
  }
}

void RuntimeInferShapeContext::ShareLoD(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) const {
  if (can_skip_lod_) {
    return;
  }
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second.at(i);
  if (!in_var->IsType<phi::DenseTensor>()) return;
  Variable* out_var = out_it->second.at(j);
  PADDLE_ENFORCE_EQ(
      out_var->IsType<phi::DenseTensor>(),
      true,
      platform::errors::InvalidArgument(
          "The %zu-th output of Output(%s) must be phi::DenseTensor.", j, out));
  auto& in_tensor = in_var->Get<phi::DenseTensor>();
  auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
  out_tensor->set_lod(in_tensor.lod());

// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out phi::DenseTensor?
#ifdef PADDLE_WITH_MKLDNN
  // Fix me: ugly workaround below
  // Correct solution:
  //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
  //    layout of output tensor should be set "manually" in Compute()
  //    of each OPKernel. The reason layout should NOT be shared between
  //    input and output "automatically" (now by InferShape()->ShareLoD())
  //    is that layout transform may occur after InferShape().
  // Workaround:
  //    Skip set_layout() when input layout is kMKLDNN
  //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
  //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
  //    in Compute()
  if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
    out_tensor->set_layout(in_tensor.layout());
}

int32_t RuntimeInferShapeContext::GetLoDLevel(const std::string& in,
                                              size_t i) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

void RuntimeInferShapeContext::SetLoDLevel(const std::string& out,
                                           int32_t lod_level,
                                           size_t j) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

bool RuntimeInferShapeContext::IsRuntime() const { return true; }

bool RuntimeInferShapeContext::IsRunMKLDNNKernel() const {
  try {
    auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
    return ((op_with_kernel.kernel_type()) &&
            (op_with_kernel.kernel_type()->data_layout_ ==
             phi::DataLayout::ONEDNN));
  } catch (std::bad_cast& exp) {
    return false;
  }
}

// TODO(paddle-dev): Can this be template?
paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
RuntimeInferShapeContext::GetInputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
RuntimeInferShapeContext::GetOutputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

DDim RuntimeInferShapeContext::GetInputDim(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input(%s) should hold one element, but now it holds %zu elements.",
          name,
          vars.size()));
  return this->GetDim(vars[0]);
}

std::vector<DDim> RuntimeInferShapeContext::GetInputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  return GetDims(vars);
}

proto::VarType::Type RuntimeInferShapeContext::GetInputVarType(
    const std::string& name) const {
  return GetVarType(InputVars(name).at(0));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetInputsVarType(
    const std::string& name) const {
  return GetVarTypes(InputVars(name));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetOutputsVarType(
    const std::string& name) const {
  return GetVarTypes(OutputVars(name));
}

void RuntimeInferShapeContext::SetOutputDim(const std::string& name,
                                            const DDim& dim) {
  auto& vars = OutputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                        "but now it holds %zu elements.",
                                        name,
                                        vars.size()));
  SetDim(vars[0], dim);
}

void RuntimeInferShapeContext::SetOutputsDim(const std::string& name,
                                             const std::vector<DDim>& dims) {
  auto& vars = OutputVars(name);
  SetDims(vars, dims);
}

const phi::ArgumentMappingFn*
RuntimeInferShapeContext::GetPhiArgumentMappingFn() const {
  return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
}

const phi::KernelSignature*
RuntimeInferShapeContext::GetPhiDefaultKernelSignature() const {
  return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
}

void RuntimeInferShapeContext::SetSkipLoD(bool skip) { can_skip_lod_ = skip; }

DDim RuntimeInferShapeContext::GetDim(Variable* var) const {
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::InvalidArgument("Input variable is nullptr."));
  if (var->IsType<phi::DenseTensor>()) {
    return var->Get<phi::DenseTensor>().dims();
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().GetCompleteDims();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
        "Variable's type is %s.",
        ToTypeName(var->Type())));
  }
}

std::vector<DDim> RuntimeInferShapeContext::GetDims(
    const std::vector<Variable*>& vars) const {
  std::vector<DDim> ret;
  ret.reserve(vars.size());
  std::transform(
      vars.begin(), vars.end(), std::back_inserter(ret), [this](Variable* var) {
        return this->GetDim(var);
      });
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetRepeatedDims(
    const std::string& name) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetRepeatedDims method only ban be used in compile time."));
}

void RuntimeInferShapeContext::SetDim(Variable* var, const DDim& dim) {
  if (var->IsType<phi::DenseTensor>()) {
    var->GetMutable<phi::DenseTensor>()->Resize(dim);
  } else if (var->IsType<phi::SelectedRows>()) {
    var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Variable type error, expect phi::DenseTensor or SelectedRows, but "
        "received "
        "(%s).",
        ToTypeName(var->Type())));
  }
}

void RuntimeInferShapeContext::SetDims(const std::vector<Variable*>& vars,
                                       const std::vector<DDim>& dims) {
  size_t length = vars.size();
  PADDLE_ENFORCE_EQ(length,
                    dims.size(),
                    platform::errors::InvalidArgument(
                        "The number of input variables do not match the "
                        "number of input dimensions, the number of variables "
                        "is %zu, the number of dimensions is %zu.",
                        length,
                        dims.size()));
  for (size_t i = 0; i < length; ++i) {
    if (vars[i] == nullptr) {
      continue;
    }
    SetDim(vars[i], dims[i]);
  }
}

void RuntimeInferShapeContext::SetRepeatedDims(const std::string& name,
                                               const std::vector<DDim>& dims) {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetRepeatedDims method only can be used in compile time."));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetVarTypes(
    const std::vector<Variable*>& vars) const {
  std::vector<proto::VarType::Type> retv;
  retv.resize(vars.size());
  std::transform(vars.begin(),
                 vars.end(),
                 retv.begin(),
                 std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                           this,
                           std::placeholders::_1));
  return retv;
}

proto::VarType::Type RuntimeInferShapeContext::GetVarType(Variable* var) const {
  return ToVarType(var->Type());
}

const std::vector<Variable*>& RuntimeInferShapeContext::InputVars(
    const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.inputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the input (%s).", op_.Type(), name));
  return it->second;
}

const std::vector<Variable*>& RuntimeInferShapeContext::OutputVars(
    const std::string& name) const {
  auto it = ctx_.outputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.outputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
  return it->second;
}

723
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
724 725 726
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
727
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
728 729 730 731
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
732
#else
733
      auto dev_id = place.device;
P
peizhilin 已提交
734
      platform::SetDeviceId(dev_id);
735 736 737
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
738 739 740 741
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
742
#else
743
      auto dev_id = place.device;
744
      platform::SetXPUDeviceId(dev_id);
745 746 747 748 749 750 751 752
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
753
      auto dev_id = place.device;
754
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
755 756 757 758 759 760 761 762
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
763
      auto dev_id = place.device;
F
fwenguang 已提交
764
      platform::SetMLUDeviceId(dev_id);
765 766 767 768 769 770 771 772
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
773
      phi::DeviceManager::SetDevice(place);
774
#endif
P
peizhilin 已提交
775
    }
P
peizhilin 已提交
776

777
    {
778 779 780
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
781
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
782
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
783 784
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
785 786
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
787
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
788
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
789 790
      RunImpl(scope, place);
    }
791

Z
Zhang Ting 已提交
792
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
793
  } catch (platform::EnforceNotMet& exception) {
794
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
795
    throw std::move(exception);
796 797 798 799 800 801
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
802
  } catch (...) {
803
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
804
    std::rethrow_exception(std::current_exception());
805
  }
806 807
}

808
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
809
  return inputs_.find(name) != inputs_.end();
810 811
}

812
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
813
  auto& ins = Inputs(name);
814
  PADDLE_ENFORCE_LE(
815 816
      ins.size(),
      1UL,
817
      platform::errors::InvalidArgument(
818 819
          "Operator %s's input %s should contain only one variable.",
          type_,
820
          name));
Y
Yu Yang 已提交
821
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
822 823
}

Y
Yu Yang 已提交
824 825
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
826
  auto it = inputs_.find(name);
827
  PADDLE_ENFORCE_NE(
828 829 830 831
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
832
  return it->second;
Y
Yan Chunwei 已提交
833 834
}

835
bool OperatorBase::HasOutputs(const std::string& name) const {
836
  if (outputs_.find(name) != outputs_.end()) {
837 838 839 840 841 842
    return true;
  } else {
    return false;
  }
}

843
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
844
  auto& outs = Outputs(name);
845
  PADDLE_ENFORCE_LE(
846 847
      outs.size(),
      1UL,
848
      platform::errors::InvalidArgument(
849 850
          "Operator %s's output %s should contain only one variable.",
          type_,
851
          name));
Y
Yu Yang 已提交
852
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
853 854
}

Y
Yu Yang 已提交
855 856
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
857
  auto it = outputs_.find(name);
858
  PADDLE_ENFORCE_NE(
859 860
      it,
      outputs_.end(),
861 862
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
863
  return it->second;
Y
Yan Chunwei 已提交
864 865
}

866
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
867
  std::stringstream ss;
Y
Yu Yang 已提交
868
  ss << "Op(" << type_ << "), inputs:{";
869

870
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
871 872
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
873 874
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
875 876
  }

Y
Yu Yang 已提交
877 878
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
879 880
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
881 882
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
883 884
      auto var_name = input.second[i];
      ss << var_name;
885
      if (scope) {
Q
Qiao Longfei 已提交
886 887 888 889 890 891 892
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
893 894 895
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
896 897 898
          std::string place = is_no_need_buffer_var
                                  ? "unknown_place"
                                  : GetPlace(*scope, var_name);
Q
Qiao Longfei 已提交
899
          ss << ":" << dtype;
900 901
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
902
          ss << "(" << place << ")";
903
        }
904
      }
Y
Yu Yang 已提交
905 906 907
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
908
    }
Y
Yu Yang 已提交
909
    ss << "]";
Y
Yu Yang 已提交
910 911
    ++it;
    if (it != inputs_.end()) {
912 913
      ss << ", ";
    }
Q
Qiao Longfei 已提交
914
  }
Y
Yu Yang 已提交
915
  ss << "}, outputs:{";
Y
Yu Yang 已提交
916 917
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
918 919
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
920 921
      auto var_name = output.second[i];
      ss << var_name;
922
      if (scope) {
Q
Qiao Longfei 已提交
923 924 925 926 927 928 929
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
930 931
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
932 933
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
934
          ss << "(" << GetPlace(*scope, var_name) << ")";
935
        }
936
      }
Y
Yu Yang 已提交
937 938 939
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
940
    }
Y
Yu Yang 已提交
941
    ss << "]";
Y
Yu Yang 已提交
942 943
    ++it;
    if (it != outputs_.end()) {
944 945
      ss << ", ";
    }
Q
Qiao Longfei 已提交
946
  }
Y
Yu Yang 已提交
947
  ss << "}.";
Q
Qiao Longfei 已提交
948 949 950
  return ss.str();
}

Y
Yu Yang 已提交
951
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
952 953
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
954
                           const AttributeMap& attrs)
S
sneaxiy 已提交
955 956 957 958 959 960
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
961 962 963 964 965 966 967 968
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
969 970 971 972 973

  // canonicalize attrs
  if (info_ && info_->proto_) {
    CanonicalizeScalarAttrs(*info_->proto_, &attrs_);
  }
974
  // In OperatorBase level, all attributes with VarDesc type will be considered
975 976 977 978 979 980
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
981
}
982

Q
qijun 已提交
983 984
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
985
  for (auto& o : inputs_) {
Q
qijun 已提交
986 987 988 989 990 991
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
992 993 994 995 996 997 998 999 1000 1001
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
1002
  auto& info = Info();
Y
Yu Yang 已提交
1003 1004

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
1005
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
1015 1016
}

1017
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
1018
  if (info_ == nullptr || info_->proto_ == nullptr) return;
1019

S
sneaxiy 已提交
1020
  for (auto& in : info_->Proto().inputs()) {
1021
    if (!in.dispensable() && !in.extra()) {
1022
      PADDLE_ENFORCE_NE(
1023 1024 1025 1026
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
1027
    }
1028 1029
  }

S
sneaxiy 已提交
1030
  for (auto& out : info_->Proto().outputs()) {
1031
    if (!out.dispensable() && !out.extra() && !out.intermediate()) {
1032
      PADDLE_ENFORCE_NE(
1033 1034 1035 1036
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
1037
    }
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
1053

1054 1055
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
1056 1057
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
1058 1059
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
1060
  } else {
1061
    PADDLE_THROW(platform::errors::InvalidArgument(
1062
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1063
        ToTypeName(var.Type())));
Q
QI JUN 已提交
1064 1065 1066
  }
}

1067
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
1068 1069
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
1070 1071
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
1072
  } else {
1073
    PADDLE_THROW(platform::errors::InvalidArgument(
1074
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1075
        ToTypeName(var->Type())));
Q
QI JUN 已提交
1076 1077 1078
  }
}

1079 1080 1081 1082 1083 1084 1085 1086
OperatorWithKernel::OperatorWithKernel(const std::string& type,
                                       const VariableNameMap& inputs,
                                       const VariableNameMap& outputs,
                                       const AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

OperatorWithKernel::~OperatorWithKernel() = default;

1087
bool ExecutionContext::HasInput(const std::string& name) const {
1088
  auto* var = InputVar(name);
1089 1090 1091
  return var != nullptr;
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

1106
bool ExecutionContext::HasOutput(const std::string& name) const {
1107
  auto* var = OutputVar(name);
1108 1109 1110
  return var != nullptr;
}

X
Xin Pan 已提交
1111
const Variable* ExecutionContext::InputVar(const std::string& name) const {
1112 1113
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
1114 1115 1116
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

1117
  PADDLE_ENFORCE_LE(
1118 1119
      it->second.size(),
      1UL,
1120
      platform::errors::InvalidArgument(
1121
          "Operator %s's input %s should contain only one variable.",
1122 1123
          op_.Type(),
          name));
X
Xin Pan 已提交
1124 1125 1126
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
1127
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
1128 1129 1130
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

1131
  PADDLE_ENFORCE_LE(
1132 1133
      it->second.size(),
      1UL,
1134 1135
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
1136 1137
          op_.Type(),
          name));
X
Xin Pan 已提交
1138 1139 1140
  return it->second.empty() ? nullptr : it->second[0];
}

1141
template <>
1142 1143
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
1144 1145
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
1146 1147
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
1148 1149
    return {};
  }
1150
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
1151
  res.reserve(vars.size());
1152 1153 1154
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1155
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
1156
                   if (var == nullptr) return nullptr;
1157 1158 1159 1160 1161 1162 1163 1164
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
1165 1166 1167 1168
                 });
  return res;
}

1169
template <>
1170
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
1171
    const std::string& name) const {
H
hong 已提交
1172 1173 1174
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
1175 1176
    return {};
  }
1177
  std::vector<phi::DenseTensor*> res;
1178
  res.reserve(vars.size());
1179 1180 1181
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1182
                 [&](Variable* var) -> phi::DenseTensor* {
1183
                   return var == nullptr ? nullptr
1184
                                         : var->GetMutable<phi::DenseTensor>();
1185
                 });
1186 1187 1188
  return res;
}

Y
Yu Yang 已提交
1189
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
1190
  // check in new Function kernel first
1191
  bool has_phi_kernel = false;
1192
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
1193
  auto kernel_key_map =
1194
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
1195
  for (auto& kernel : kernel_key_map) {
1196
    has_phi_kernel = true;
1197
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
1198 1199 1200 1201
      return true;
    }
  }

Y
Yu Yang 已提交
1202 1203
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
1217 1218 1219
      return true;
    }
  }
H
hong 已提交
1220

Y
Yu Yang 已提交
1221 1222 1223
  return false;
}

1224
struct OperatorWithKernel::CacheImpl {
1225
  static const char kNotAllowInferShapeCahce[];
1226
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
1227 1228 1229 1230 1231 1232 1233
                     RuntimeInferShapeContext* infer_shape_ctx,
                     const std::vector<phi::DenseTensor*>& tensors,
                     bool not_allow_infer_shape_cache)
      : kernel_ctx_(kernel_ctx),
        infer_shape_ctx_(infer_shape_ctx),
        tensors_(tensors),
        not_allow_infer_shape_cache_(not_allow_infer_shape_cache) {}
1234 1235 1236 1237 1238 1239

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
  bool NeedInferShape() {
    if (not_allow_infer_shape_cache_) return true;

    bool ret{false};
    if (last_ddims_.empty() || tensors_.empty()) ret = true;
    if (!ret) {
      CHECK_EQ(last_ddims_.size(), tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        if (tensors_[i]->dims() != last_ddims_[i]) {
          ret = true;
          break;
        }
      }
    }
    if (ret) {
      last_ddims_.resize(tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        last_ddims_[i] = tensors_[i]->dims();
      }
    }
    VLOG(3) << "need infer shape is " << ret;
    return ret;
  }

1264 1265 1266
 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
1267 1268 1269
  std::vector<phi::DenseTensor*> tensors_;
  bool not_allow_infer_shape_cache_;
  std::vector<phi::DDim> last_ddims_;
1270
};
1271 1272
const char OperatorWithKernel::CacheImpl::kNotAllowInferShapeCahce[] =
    "@NOT_ALLOW_INFERSHAPE_CACHE@";
1273

1274 1275
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1276
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1277 1278 1279
  if (tensor.memory_size() == 0) {
    return;
  }
1280 1281
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1282 1283
    return;
  }
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1296 1297
}

1298 1299 1300 1301
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1302 1303
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1316 1317
          op_kernels.begin(),
          op_kernels.end(),
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1329 1330
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1343 1344
          op_kernels.begin(),
          op_kernels.end(),
1345 1346 1347 1348 1349 1350 1351
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
Q
QingshuChen 已提交
1375 1376 1377 1378
                   paddle::platform::is_xpu_support_op(
                       type_,
                       framework::TransToPhiDataType(
                           kern_pair.first.data_type_));
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1390
bool OperatorWithKernel::SupportsMKLDNN(const phi::DataType data_type) const {
1391 1392 1393 1394 1395
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1396 1397
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
1398
                           kern_pair.first.dtype() == data_type;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
1414 1415
                   kern_pair.first.data_type_ ==
                       paddle::framework::TransToProtoVarType(data_type);
1416 1417
          });
    }
1418
  }
1419 1420
}

1421
bool OperatorWithKernel::SupportsCUDNN(const phi::DataType data_type) const {
1422 1423
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
1424 1425 1426 1427 1428 1429 1430
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPUDNN &&
                           kern_pair.first.dtype() == data_type;
                  });
1431 1432 1433 1434 1435 1436 1437 1438
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
1439 1440
      proto::VarType::Type fluid_data_type =
          framework::TransToProtoVarType(data_type);
1441 1442 1443
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
1444
          [fluid_data_type](OpKernelMap::const_reference kern_pair) {
1445 1446
            return platform::is_gpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kCUDNN &&
1447
                   kern_pair.first.data_type_ == fluid_data_type;
1448 1449 1450 1451 1452
          });
    }
  }
}

1453
bool OperatorWithKernel::SupportsKernelType(
1454
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1455 1456
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1457 1458 1459 1460 1461
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1462
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1463
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1464 1465
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1466 1467
  }
#endif
1468 1469 1470 1471 1472

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
1473
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1474
            type_, framework::TransToPhiDataType(kernel_type.data_type_));
1475 1476 1477 1478 1479 1480 1481 1482 1483
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1484 1485
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1486 1487 1488
  }
#endif

1489
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1490 1491 1492 1493 1494
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1495
#ifdef PADDLE_WITH_MKLDNN
1496
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1497 1498 1499
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
1500
    tmp_kernel_type.data_layout_ = framework::DataLayout::ONEDNN;
1501 1502 1503 1504
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1505 1506 1507 1508 1509 1510 1511 1512
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kCUDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1513
  return kernel_iter != kernels.end();
1514 1515
}

1516
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
1517
                                         phi::DataType data_type) const {
1518
  return ctx.HasAttr("use_mkldnn") && ctx.Attr<bool>("use_mkldnn") &&
1519 1520
         platform::is_cpu_place(ctx.GetPlace()) &&
         this->SupportsMKLDNN(data_type);
1521 1522
}

1523 1524 1525 1526 1527
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
  return this->CanMKLDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1528
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
1529
                                        phi::DataType data_type) const {
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
  bool use_cudnn = ctx.HasAttr("use_cudnn") && ctx.Attr<bool>("use_cudnn") &&
                   paddle::platform::is_gpu_place(ctx.GetPlace());

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<phi::GPUContext>();
    use_cudnn &= (dev_ctx.cudnn_handle() != nullptr);
  }
#endif  // PADDLE_WITH_CUDA || PADDLE_WITH_HIP

#if defined(PADDLE_WITH_CUDA)
1541
  if (use_cudnn && data_type == phi::DataType::BFLOAT16) {
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    PADDLE_ENFORCE_GE(
        platform::DnnVersion(),
        8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA

  return use_cudnn && this->SupportsCUDNN(data_type);
}

1553 1554 1555 1556 1557
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                                        proto::VarType::Type data_type) const {
  return this->CanCUDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1558 1559 1560 1561 1562 1563 1564
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1565
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1566 1567
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1568
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1569
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1570 1571
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
template <typename T>
bool HasSameTensorType(phi::TensorBase* phi_tensor, Variable* var) {
  if (phi_tensor == nullptr && var == nullptr) {
    return true;
  } else if (phi_tensor != nullptr && var != nullptr) {
    if (T::classof(phi_tensor) && var->IsType<T>()) {
      return true;
    }
  }
  return false;
}

// TODO(YuanRisheng): We need collect all `need_prepare_phi_data_`
// into this function.
void OperatorWithKernel::CheckWhetherPreparePhiData(
    const VariableNameMap& innames,
    const VariableNameMap& outnames,
    const Scope& scope) const {
  if (run_phi_kernel_ && impl_ != nullptr) {
    const auto& phi_kernel_context = impl_->getKernelContext();
    size_t phi_tensor_index = 0;
    // Check each tensor in KernelContext, if there is a tensor that has
    // different type with variable. The PhiKernelContext need be reconstructed.
    // We use kernel_signature_'s output to retrieve tensor. Because the tensor
    // in phi_kernel_context stored in the order of kernel_signature_'s output.
    if (phi_kernel_context->OutputsSize() >= phi_tensor_index ||
        kernel_signature_ == nullptr) {
      need_prepare_phi_data_ = true;
      return;
    }

    const auto& phi_output_names = kernel_signature_->output_names;
    for (auto& phi_output_name : phi_output_names) {
      const auto& iter = outnames.find(phi_output_name);
      if (iter != outnames.end()) {
        for (auto& var_name : iter->second) {
          auto var_output = scope.FindVar(var_name);
          auto phi_output =
              phi_kernel_context->MutableOutputAt<phi::TensorBase>(
                  phi_tensor_index);
          if (phi_output == nullptr) {
            continue;
          }
          if (!(HasSameTensorType<phi::DenseTensor>(phi_output, var_output) ||
                HasSameTensorType<phi::SparseCooTensor>(phi_output,
                                                        var_output) ||
                HasSameTensorType<framework::Strings>(phi_output,
                                                      var_output))) {
            need_prepare_phi_data_ = true;
          }
          phi_tensor_index++;
        }
      }
    }
  }
}

L
luotao1 已提交
1629 1630
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1631 1632
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1633 1634 1635
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1636
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1637
    all_kernels_must_compute_runtime_shape_ = true;
C
csy0225 已提交
1638
  const Scope* cur_scope = &scope;
1639
  CheckWhetherPreparePhiData(Inputs(), Outputs(), scope);
1640
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1641 1642
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1643 1644
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
1645
    if (!all_kernels_must_compute_runtime_shape_ && impl_->NeedInferShape()) {
1646
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
1647
    }
1648
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1649
  } else {
C
csy0225 已提交
1650
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
1651
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
C
csy0225 已提交
1652 1653 1654 1655
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1656
    }
1657
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1658 1659 1660 1661 1662 1663
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1664
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1665
  bool fallback_to_cpu = false;
1666
  auto* dev_ctx = pool.Get(place);
1667

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1678 1679 1680 1681
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
H
HongyuJia 已提交
1682
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1683

1684 1685 1686 1687 1688 1689
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1690 1691 1692 1693 1694
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1695 1696
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1697
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1698
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1699 1700 1701 1702 1703 1704
      if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
        kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
      } else {
        kernel_signature_.reset(new phi::KernelSignature(
            std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      }
1705

1706 1707
      VLOG(6) << *kernel_signature_.get();
      phi_kernel_name = kernel_signature_->name;
1708 1709 1710
      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);
1711 1712 1713 1714 1715 1716 1717
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1718
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1719
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1734
                  << phi_kernel_name
1735
                  << ", using_kernel_key:" << *kernel_type_.get();
1736
          auto try_phi_kernel_key =
1737
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1738 1739
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1740 1741
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1742
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1743 1744 1745
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1746
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1747 1748 1749 1750
          }
        }
      }
#endif
1751 1752
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1753
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1754
              phi_kernel_name, phi_kernel_key)));
1755

1756
      if (phi_kernel_->IsValid()) {
1757
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
1758 1759
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1760
      } else {
1761 1762
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `"
                << phi_kernel_name << "` not found.";
1763
      }
1764
    } else {
1765
      phi_kernel_name = kernel_signature_->name;
1766
// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
1767
// LibraryType::kMKLDNN and data_layout_ = DataLayout::ONEDNN. But the default
1768
// values are kPlain, so we need to modify the library_type and data_layout_
1769 1770 1771 1772
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1773
#ifdef PADDLE_WITH_MKLDNN
1774 1775
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1776 1777
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
1778
        kernel_type_->data_layout_ = framework::DataLayout::ONEDNN;
1779 1780 1781
      }
#endif

1782 1783 1784 1785 1786 1787
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (this->CanCUDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kCUDNN;
      }
#endif

1788 1789 1790
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1791 1792 1793 1794
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1795
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1796
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1810
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1811
                  << phi_kernel_name
1812
                  << ", using_kernel_key:" << *kernel_type_.get();
1813
          auto try_phi_kernel_key =
1814
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1815 1816
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1817
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1818
            VLOG(3) << "modify XPU KP kernel in static graph: "
1819
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1820 1821 1822
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1823
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1824 1825 1826 1827
          }
        }
      }
#endif
1828
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1829
    }
1830 1831 1832 1833

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1834
#if defined(PADDLE_WITH_XPU)
1835 1836
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
Q
QingshuChen 已提交
1837 1838
        !paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1839
#endif
1840 1841 1842 1843
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
1844
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1845
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1846 1847 1848 1849 1850 1851
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1852 1853 1854 1855 1856 1857
    bool in_custom_back_list = false;
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    in_custom_back_list =
        phi::backends::custom_device::is_in_custom_black_list(phi_kernel_name);
#endif
    if (phi_kernel_->IsValid() && !in_custom_back_list
1858
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1859 1860
        && !is_xpu_unsupport
#endif
1861 1862 1863
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1864
    ) {
1865
      run_phi_kernel_ = true;
1866 1867 1868
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1869 1870 1871 1872 1873 1874 1875 1876 1877

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif
1878 1879 1880
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1881
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1882
          || is_xpu_unsupport
1883
#endif
1884 1885
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
1886 1887 1888
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
          || in_custom_back_list
1889
#endif
1890
      ) {
1891
        fallback_to_cpu = true;
1892 1893 1894
        if (in_custom_back_list) {
          VLOG(3) << "fluid in black list: " << phi_kernel_name;
        }
H
HongyuJia 已提交
1895
        auto phi_cpu_kernel_key = FallBackToCpu(phi_kernel_key, *this);
1896
        phi_kernel_.reset(
1897
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1898
                phi_kernel_name, phi_cpu_kernel_key)));
1899 1900

        dev_ctx = pool.Get(platform::CPUPlace());
1901
        if (phi_kernel_->IsValid()) {
1902
          VLOG(6) << "Static graph mode PrepareImpl - kernel name: "
1903 1904
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1905
          run_phi_kernel_ = true;
1906 1907
        }
      }
1908 1909
    }
  }
1910
  if (!run_phi_kernel_) {
1911 1912
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1913
      dev_ctx = pool.Get(kernel_type_->place_);
1914
    }
1915 1916
  }

Y
yuyang18 已提交
1917 1918
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1919 1920
  Scope* transfer_scope = nullptr;
  {
1921
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1922
                                       platform::TracerEventType::OperatorInner,
1923 1924
                                       1,
                                       platform::EventRole::kInnerOp);
1925
    if (need_prepare_data_) {
1926 1927 1928 1929 1930 1931
      transfer_scope =
          PrepareData(scope,
                      framework::TransOpKernelTypeToPhiKernelKey(*kernel_type_),
                      &transfered_inplace_vars,
                      runtime_ctx,
                      dev_ctx->GetPlace());
1932
    }
1933
  }
Y
yuyang18 已提交
1934 1935 1936 1937
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1938
  if (!all_kernels_must_compute_runtime_shape_) {
1939
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1940
                                       platform::TracerEventType::OperatorInner,
1941 1942
                                       1,
                                       platform::EventRole::kInnerOp);
1943
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1944
    this->Info().infer_shape_(&infer_shape_ctx);
1945 1946
    record_event.End();
    platform::RecordOpInfoSupplement(
1947
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx, Id());
1948
  }
1949 1950 1951 1952 1953

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1954 1955
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1956
  {
1957
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1958
                                       platform::TracerEventType::OperatorInner,
1959 1960
                                       1,
                                       platform::EventRole::kInnerOp);
1961 1962
    if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                               phi::KernelRegisteredType::FUNCTION) {
1963
      phi::KernelContext phi_kernel_context;
1964 1965
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
        // TODO(inference): Now we only suppor dense_tensor cache, we may be
        // support ScalarTensor, SparseTensor in future.
        bool all_dense_tensor_input_{true};
        for (auto& iter : Inputs()) {
          for (auto& name : iter.second) {
            all_dense_tensor_input_ &=
                scope.FindVar(name)->IsType<phi::DenseTensor>();
          }
        }

        std::vector<phi::DenseTensor*> tensors;
        if (all_dense_tensor_input_) {
          for (auto& iter : Inputs()) {
            for (auto& name : iter.second) {
              auto* t = scope.FindVar(name)->GetMutable<phi::DenseTensor>();
              tensors.push_back(t);
            }
          }
        }

        impl_.reset(
1987
            new CacheImpl(new phi::KernelContext(),
1988 1989 1990
                          new RuntimeInferShapeContext(*this, *runtime_ctx),
                          tensors,
                          HasAttr(CacheImpl::kNotAllowInferShapeCahce)));
1991
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1992
        (*phi_kernel_)(impl_->getKernelContext());
1993
      } else {
1994
        phi::KernelContext phi_kernel_context;
1995 1996
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1997 1998
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1999
      }
2000 2001 2002 2003 2004
    } else if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                                      phi::KernelRegisteredType::STRUCTURE) {
      ExecutionContext execution_context(
          *this, exec_scope, *dev_ctx, *runtime_ctx);
      (*phi_kernel_)(&execution_context);
2005 2006 2007 2008
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
2009 2010 2011
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
2012
  }
D
dzhwinter 已提交
2013

Y
yuyang18 已提交
2014
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
2015
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
2016
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
2017
  }
2018 2019 2020 2021 2022 2023 2024

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

2025 2026 2027 2028 2029 2030 2031 2032
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
2033

D
dzhwinter 已提交
2034
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
2035
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
2036
    dev_ctx->Wait();
2037 2038
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
2039 2040
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
2041
  }
C
chengduoZH 已提交
2042 2043

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
2044
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
2045
  }
2046 2047 2048 2049

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
C
csy0225 已提交
2050 2051
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
2052
  }
Q
Qiao Longfei 已提交
2053
}
X
Xin Pan 已提交
2054

2055 2056
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
2057 2058 2059
  phi::KernelKey phi_kernel_key = this->GetExpectedKernelType(ctx);
  auto expected_kernel_key =
      framework::TransPhiKernelKeyToOpKernelType(phi_kernel_key);
2060 2061 2062

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
2063
// data_layout_ of expected_kernel_key need to be adjusted. There are three
2064
// statements in if condition:
2065 2066 2067
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
2068
#ifdef PADDLE_WITH_MKLDNN
2069
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
2070 2071
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
2072
    expected_kernel_key.data_layout_ = framework::DataLayout::ONEDNN;
2073 2074 2075
  }
#endif

2076 2077 2078 2079 2080 2081
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kCUDNN;
  }
#endif

2082 2083 2084
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
2095 2096 2097
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
2098 2099
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2100
      if (SupportGPU()) {
2101
        auto& dev_ctx = ctx.device_context();
2102
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2103 2104
      }
#endif
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
2124 2125 2126
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
2127
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2128 2129 2130
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
2131 2132
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
2159 2160 2161
      }
    }
  }
2162 2163 2164 2165 2166 2167

  if (platform::places_are_same_class(expected_kernel_key.place_,
                                      ctx.GetPlace())) {
    expected_kernel_key.place_ = ctx.GetPlace();
  }

C
cc 已提交
2168 2169
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
2170 2171 2172
  return expected_kernel_key;
}

2173
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
2174
    const ExecutionContext& ctx) const {
2175 2176 2177 2178 2179 2180 2181
  std::string phi_kernel_name;
  if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
    kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
  } else {
    kernel_signature_.reset(
        new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  }
2182
  VLOG(6) << *kernel_signature_.get();
2183
  phi_kernel_name = kernel_signature_->name;
2184 2185 2186
  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

2187 2188 2189
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
2190

2191
  if (phi_kernel_->IsValid()) {
2192 2193
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
            << phi_kernel_name << " | kernel key: " << phi_kernel_key
2194
            << " | kernel: " << *phi_kernel_;
2195
  } else {
2196
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `" << phi_kernel_name
2197 2198
            << "` not found.";
  }
2199
  return phi_kernel_key;
2200 2201 2202 2203 2204 2205 2206
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
2207 2208
      kernels_iter,
      all_op_kernels.end(),
2209
      platform::errors::Unimplemented(
2210 2211 2212 2213 2214 2215
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
2216 2217

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
2218

L
Liu Yiqun 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
2228
#endif
2229 2230

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
2231
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
2232
      (kernel_iter == kernels.end() ||
Q
QingshuChen 已提交
2233 2234 2235
       !paddle::platform::is_xpu_support_op(
           type_,
           framework::TransToPhiDataType(expected_kernel_key.data_type_)))) {
2236
    VLOG(3) << "fluid missing XPU kernel: " << type_
2237 2238 2239 2240 2241
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
2242
#endif
L
Liu-xiandong 已提交
2243 2244

#ifdef PADDLE_WITH_XPU_KP
2245 2246 2247
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
2248
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
2249 2250
            type_,
            framework::TransToPhiDataType(expected_kernel_key.data_type_));
2251 2252 2253
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
2254
      VLOG(3) << "fluid xpu_kp using rt mode ";
2255 2256
    }
    if (use_xpu_kp_kernel_debug) {
2257
      VLOG(3) << "fluid xpu_kp using debug mode ";
2258 2259 2260
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2261 2262
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2263 2264
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2265
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2266
      // if the fluid do not register related kernel, it can't work and have
2267 2268 2269 2270 2271 2272 2273
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2274
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2275 2276
                << ", using_kernel_key:" << expected_kernel_key;
      }
2277
    }
Q
QingshuChen 已提交
2278 2279
    bool is_xpu_unsupport = (!paddle::platform::is_xpu_support_op(
        type_, framework::TransToPhiDataType(expected_kernel_key.data_type_)));
2280 2281
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2282
      VLOG(3) << "fluid missing XPU kernel: " << type_
2283 2284 2285 2286 2287
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2288 2289 2290
  }
#endif

A
Allen Guo 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
2301 2302
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
2303
      platform::is_npu_place(expected_kernel_key.place_)) {
2304 2305 2306 2307 2308 2309
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
2310 2311 2312
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
2313
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
2314 2315 2316
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2328 2329 2330
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2331
#endif
2332 2333 2334 2335 2336 2337
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2338

2339 2340 2341 2342 2343
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2344 2345
}

Y
yuyang18 已提交
2346
void OperatorWithKernel::TransferInplaceVarsBack(
2347 2348
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2349 2350
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2351
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2352
    auto* origin_var = scope.FindVar(var_name);
2353 2354 2355
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2356
    auto* original_tensor =
C
chengduo 已提交
2357
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2358
    auto* var = transfer_scope.FindVar(var_name);
2359 2360 2361
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2362
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2363
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2364
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2365 2366 2367 2368 2369
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2370 2371 2372
  }
}

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2402
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2422
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2433
      phi::DenseTensor out;
2434 2435 2436 2437 2438 2439
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2440
Scope* OperatorWithKernel::PrepareData(
2441
    const Scope& scope,
2442
    const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
2443
    std::vector<std::string>* transfered_inplace_vars,
2444 2445
    RuntimeContext* ctx,
    const phi::Place& place) const {
Y
yuyang18 已提交
2446
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2447

2448
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2449 2450 2451 2452
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2453 2454
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2455 2456 2457
    }
  }

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
  auto has_infer_varkernel_fn =
      (run_phi_kernel_ && phi_kernel_->get_kerneltype_forvar_fn_ != nullptr);
  phi::AttributeMap infer_attrs{};
  auto fluid_attrs = Attrs();
  phi::GetKernelTypeForVarContext infer_varkernel_context =
      BuildGetKernelTypeForVarContext(expected_kernel_key,
                                      fluid_attrs,
                                      &infer_attrs,
                                      has_infer_varkernel_fn);

2468 2469 2470 2471 2472 2473 2474 2475 2476
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2477

Y
yuyang18 已提交
2478
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2479
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2480 2481 2482
        continue;
      }

C
chengduo 已提交
2483
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2484

2485
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2486 2487 2488 2489 2490 2491 2492
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
2493
        // oneDNN shape of Var may differ from kNHWC Var
2494 2495
        // In such situation corressponding resized Var
        // has to be created and registered
2496
        if ((tensor_in->layout() == DataLayout::ONEDNN) &&
2497
            (var->IsType<phi::DenseTensor>() == true) &&
2498
            (expected_kernel_key.layout() != DataLayout::ONEDNN) &&
2499 2500
            (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
             DataLayout::kNHWC) &&
2501
            (tensor_in->dims().size() >= 3)) {
2502
          // Mixed execution : oneDNN and GPU is not supported!
2503 2504 2505 2506
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2507
          in_vars->at(i) = trans_var;
2508
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2509
          out->Resize(tensor_in->dims());
2510
          phi::funcs::MatchShapeToLayout(
2511
              out, tensor_in->layout(), DataLayout::kNHWC);
2512
          VLOG(7) << "Created reshaped dummy input based on oneDNN "
2513
                     "phi::DenseTensor , "
2514
                     "but kNHWC layout"
2515
                  << in_name << " in Operator " << type_;
2516
        } else {
2517 2518
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2519 2520 2521 2522 2523
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2524 2525 2526 2527
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2528 2529
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
2530 2531 2532 2533 2534 2535 2536
      if (has_infer_varkernel_fn) {
        infer_varkernel_context.SetVarName(const_cast<std::string*>(&in_name));
        infer_varkernel_context.SetDenseTensor(
            const_cast<phi::DenseTensor*>(tensor_in));
        kernel_type_for_var =
            phi_kernel_->get_kerneltype_forvar_fn_(&infer_varkernel_context);
      }
2537
      bool need_trans_dtype =
2538
          NeedTransformDataType(expected_kernel_key, kernel_type_for_var);
2539
      bool need_trans_layout = NeedTransformLayout(
2540
          kernel_type_for_var.layout(), expected_kernel_key.layout());
2541 2542
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
2543 2544
            backends_are_same_class(kernel_type_for_var.backend(),
                                    expected_kernel_key.backend())) {
2545 2546 2547
          continue;
        }
      }
Y
yuyang18 已提交
2548

2549
      std::unique_ptr<phi::KernelKey> new_expected_kernel_key = nullptr;
2550 2551
      if (run_phi_kernel_ && in_def != nullptr &&
          in_def->backend != phi::Backend::ALL_BACKEND) {
2552 2553
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
2554 2555 2556 2557 2558 2559
             !(in_def->backend == phi::Backend::GPUDNN &&
               tensor_backend == phi::Backend::GPU) &&
             !(in_def->backend == phi::Backend::KPS &&
               tensor_backend == phi::Backend::XPU) &&
             !(in_def->backend == phi::Backend::ONEDNN &&
               tensor_backend == phi::Backend::CPU)) ||
2560
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
2561 2562 2563 2564
          new_expected_kernel_key =
              std::make_unique<phi::KernelKey>(in_def->backend,
                                               expected_kernel_key.layout(),
                                               expected_kernel_key.dtype());
2565 2566 2567 2568 2569 2570 2571
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2572 2573
      }

M
minqiyang 已提交
2574
      VLOG(3) << "Transform Variable " << var_name << " from "
2575 2576 2577
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2578

H
HongyuJia 已提交
2579 2580 2581
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2582
      // We use a thread_local cache to fix that issue, the key in the cache is
2583 2584 2585 2586 2587
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2588 2589
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2590
      // variables, that behavior a lot different.
2591 2592 2593 2594 2595 2596
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2597 2598
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
2599 2600 2601 2602
          if (kernel_type_for_var.backend() == phi::Backend::GPU ||
              kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
              new_expected_kernel_key->backend() == phi::Backend::GPU ||
              new_expected_kernel_key->backend() == phi::Backend::GPUDNN) {
C
csy0225 已提交
2603
            new_scope = TryCreateTransferScope(
2604 2605 2606
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
2607 2608 2609 2610
        } else if (kernel_type_for_var.backend() == phi::Backend::GPU ||
                   kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
                   expected_kernel_key.backend() == phi::Backend::GPU ||
                   expected_kernel_key.backend() == phi::Backend::GPUDNN) {
C
csy0225 已提交
2611
          new_scope = TryCreateTransferScope(
2612 2613 2614
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2615
      }
2616

2617
      if (!new_scope) {
Y
yuyang18 已提交
2618 2619
        new_scope = &scope.NewScope();
      }
C
csy0225 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2630 2631

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2632
      auto* trans_var = new_scope->Var(var_name);
2633
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2634 2635 2636 2637 2638 2639 2640

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2641
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2651
      phi::DenseTensor out;
2652 2653 2654 2655 2656 2657 2658 2659 2660
      TransformData(
          new_expected_kernel_key ? *new_expected_kernel_key
                                  : expected_kernel_key,
          kernel_type_for_var,
          *tensor_in,
          &out,
          new_expected_kernel_key
              ? phi::TransToPhiPlace(new_expected_kernel_key->backend())
              : place);
Y
yuyang18 已提交
2661 2662
      SetTensorToVariable(*var, out, trans_var);
    }
2663 2664
  };

2665 2666
  if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                             phi::KernelRegisteredType::FUNCTION) {
2667
    const auto& input_names = kernel_signature_->input_names;
2668
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
2685 2686 2687 2688 2689 2690 2691 2692 2693

      phi::TensorArgDef in_def = input_defs.at(i);
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      // When the backend of input tensor arg_def is CUSTOM, we need to set it
      // to the actual backend by expected_kernel_key.
      if (in_def.backend == phi::Backend::CUSTOM) {
        in_def.SetBackend(expected_kernel_key.backend());
      }
#endif
2694 2695
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
#ifdef PADDLE_WITH_MKLDNN
    // For input that is Extra, only MKLDNN will use Extra Inputs
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      std::vector<Variable*>& input_vars = iter->second;
      prepare_input_data(input_name, &input_vars, nullptr, should_skip_input);
    }
#endif
2712 2713 2714 2715 2716 2717 2718 2719 2720
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2721
  }
L
Leo Chen 已提交
2722

C
csy0225 已提交
2723 2724 2725 2726
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
2727 2728
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
C
csy0225 已提交
2729

W
wenbin 已提交
2730 2731 2732 2733
  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
C
csy0225 已提交
2734
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2735 2736
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2737 2738 2739

  return new_scope;
}
Q
Qiao Longfei 已提交
2740

2741
void OperatorWithKernel::ParseInputDataType(
2742 2743
    const Variable* var,
    const std::string& name,
2744 2745
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2746 2747 2748
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2749 2750
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2751 2752
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      PADDLE_ENFORCE_EQ(
          sp_t->initialized(),
          true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(),
                                            name));
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2779 2780
    const std::vector<Variable*>& vars,
    const std::string& name,
2781
    proto::VarType::Type* data_type) const {
2782
  proto::VarType::Type default_data_type =
2783 2784 2785 2786
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2787 2788 2789
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2790 2791
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2815
      } else if (var->IsType<LoDTensorArray>()) {
2816 2817 2818 2819
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2820 2821
          }
        }
2822 2823
      }
      if (t != nullptr) {
2824 2825 2826 2827 2828 2829 2830
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2831 2832
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2833 2834 2835 2836 2837 2838 2839
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2840 2841 2842
                           Type(),
                           name,
                           DataTypeToString(tmp),
2843
                           DataTypeToString(*data_type)));
2844 2845 2846 2847 2848 2849
        *data_type = tmp;
      }
    }
  }
}

2850
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2851
    const ExecutionContext& ctx) const {
2852 2853 2854
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2855

2856
  for (auto* name : ctx.InNameList()) {
2857 2858 2859 2860 2861
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2862
  }
2863
  PADDLE_ENFORCE_NE(
2864 2865
      data_type,
      dafault_data_type,
2866 2867
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2868 2869 2870 2871 2872 2873 2874 2875
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2876 2877 2878 2879 2880
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2881
  PADDLE_ENFORCE_NE(
2882 2883
      data_type,
      dafault_data_type,
2884 2885
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2886
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2887
          "LoDTensorArray.",
2888 2889
          name,
          Type()));
2890
  return data_type;
Y
Yu Yang 已提交
2891
}
2892

2893
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2906 2907 2908
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2909 2910
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2911 2912 2913 2914
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2915 2916 2917 2918 2919 2920 2921
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2922
      platform::errors::InvalidArgument(
2923 2924 2925 2926 2927
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2939 2940
    const ExecutionContext& ctx,
    const std::string& name1,
2941 2942 2943 2944 2945 2946
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2947 2948
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2949 2950 2951 2952 2953 2954 2955

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2956
phi::KernelKey OperatorWithKernel::GetExpectedKernelType(
2957
    const ExecutionContext& ctx) const {
2958
  return phi::KernelKey(IndicateDataType(ctx), ctx.GetPlace());
2959 2960
}

2961
phi::KernelKey OperatorWithKernel::GetKernelTypeForVar(
2962
    const std::string& var_name,
2963
    const phi::DenseTensor& tensor,
2964
    const phi::KernelKey& expected_kernel_type) const {
2965 2966 2967 2968
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
2969
  if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
2970
      (tensor.layout() != phi::DataLayout::ONEDNN) &&
2971 2972
      phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
          phi::DataLayout::kNHWC) {
2973 2974
    return phi::KernelKey(
        tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
2975 2976
  }
#endif
2977 2978
  return phi::KernelKey(
      tensor.place(), tensor.layout(), expected_kernel_type.dtype());
2979 2980
}

2981
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2982
    const ExecutionContext& ctx) const {
2983
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2984
  if (arg_map_fn_ == nullptr) {
2985 2986 2987 2988
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2989 2990 2991
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2992 2993 2994 2995
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2996 2997
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2998 2999
}

3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
static void SetDnnAttrIntoDeviceContext(
    phi::DeviceContext* dev_ctx,
    const Attribute& attr,
    const std::string& attr_name,
    const operators::ExtraAttrPropertySet& attr_propertys) {
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::ONEDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to OneDNNContext.";
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::FLOAT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(float, attr));
        break;
      case proto::AttrType::INT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::STRING:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(std::string, attr));
        break;
      case proto::AttrType::INTS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<int>, attr));
        break;
      case proto::AttrType::FLOATS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<float>, attr));
        break;
      case proto::AttrType::BOOLEAN:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
#ifdef PADDLE_WITH_CUDA
  if (phi::GPUContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::GPUDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to GPUDNNContext.";
    phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::INT:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::BOOLEAN:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
}

3059
void OperatorWithKernel::BuildPhiKernelContext(
3060 3061
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
3062 3063
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
3064

3065 3066 3067
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
3068

3069 3070 3071
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
3072

3073 3074 3075 3076 3077 3078 3079 3080 3081
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    // Onednn holds this op's variable's name and init them here.
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->SetInputsName(Inputs());
    one_dnn_ctx->SetOutputsName(Outputs());
  }
#endif

3082 3083
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
3084 3085 3086
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
3087 3088
                        input_names.size(),
                        input_defs.size()));
3089

3090 3091
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
3092 3093 3094
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
3095 3096
                        output_names.size(),
                        output_defs.size()));
3097

3098 3099
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
3100 3101 3102
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
3103 3104
                        attr_names.size(),
                        attr_defs.size()));
3105
  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
3106
    auto it = ctx.inputs.find(input_names[i]);
3107 3108 3109

    // calcute the start and end index of the input tensors
    size_t start_idx =
3110
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
3111
    // deal with optional here
3112
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
3113
        (input_defs[i].type_index ==
3114
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
3115
         input_defs[i].type_index ==
3116
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
3117
         input_defs[i].type_index ==
3118 3119
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
3120
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
3121
      auto end_idx = start_idx + 1;
3122 3123
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
3124

H
hong 已提交
3125 3126 3127 3128
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
3129
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
3130
      const phi::TensorBase* tensor_in = nullptr;
3131
      auto* var = ins_vector[offset];
3132 3133
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
3134
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3135 3136
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
3137
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3138 3139 3140
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3141
      } else if (var->IsType<framework::LoDTensorArray>()) {
3142
        need_prepare_phi_data_ = true;
3143 3144
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3145 3146 3147
      } else if (var->IsType<framework::Vocab>()) {
        tensor_in = &(var->Get<framework::Vocab>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3148 3149 3150
      } else if (var->IsType<framework::FeedList>()) {
        tensor_in = &(var->Get<framework::FeedList>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3151 3152 3153 3154
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
3155
      }
3156
    }
3157
    // Note: here cannot deal with vector<LoDTensorArray> input
3158
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
3159
  }
3160
  VLOG(4) << "Done inputs";
3161
  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
3162
    auto it = ctx.outputs.find(output_names[i]);
3163
    size_t start_idx =
3164
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
3165 3166

    if (it == ctx.outputs.end() || it->second.empty()) {
3167
      VLOG(4) << "Output " << output_names[i] << " not found";
H
hong 已提交
3168 3169 3170 3171
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
3172
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
3173
      auto end_idx = start_idx + 1;
3174 3175
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
3176 3177 3178 3179
      continue;
    }
    auto& outs_vector = it->second;

3180
    size_t end_idx = start_idx + outs_vector.size();
3181 3182

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
3183
      phi::TensorBase* tensor_out = nullptr;
3184
      auto* var = outs_vector[offset];
3185
      if (var) {
3186 3187
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
3188
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3189 3190
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
3191
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3192 3193 3194
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3195
        } else if (var->template IsType<framework::LoDTensorArray>()) {
3196
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
3197 3198
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
3199
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3200 3201 3202
        } else if (var->template IsType<framework::Strings>()) {
          tensor_out = var->template GetMutable<framework::Strings>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3203 3204 3205 3206 3207 3208 3209
        } else if (var->template IsType<paddle::framework::RawTensor>()) {
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (!var->IsInitialized()) {
          // The following is for RAW type of var
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3210 3211 3212 3213 3214
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
3215
      } else {
3216
        VLOG(4) << "Output " << output_names[i] << " is nullptr";
3217
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3218
      }
3219
    }
3220 3221
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
3222
  }
3223
  VLOG(4) << "Done outputs";
3224
  for (size_t i = 0; i < attr_names.size(); ++i) {
3225 3226
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
3227 3228
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
3229 3230 3231 3232 3233 3234 3235
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
3236
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3237
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
3238
              break;
3239 3240 3241 3242
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
3243
            case proto::AttrType::INT:
3244
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3245
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
3246
              break;
3247 3248 3249 3250
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
3251
            case proto::AttrType::STRING:
3252
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
3253
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
3254
              break;
3255 3256 3257 3258
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
3259 3260 3261 3262 3263
            case proto::AttrType::SCALAR:
              phi_kernel_context->EmplaceBackAttr(
                  std::move(phi::Scalar(PADDLE_GET_CONST(
                      paddle::experimental::Scalar, attr_iter->second))));
              break;
3264 3265 3266 3267 3268 3269 3270
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
3271
          need_prepare_phi_data_ = true;
3272
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
3273 3274
          phi_kernel_context->EmplaceBackAttr(
              std::move(framework::MakePhiScalarFromVar(*ins_vector.front())));
3275
        }
3276 3277 3278 3279 3280
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
3281
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3282
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
3283 3284
              break;
            case proto::AttrType::LONGS:
3285
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3286
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
3287 3288
              break;
            case proto::AttrType::INT:
3289
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3290
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
3291 3292
              break;
            case proto::AttrType::LONG:
3293
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3294
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
3295 3296 3297 3298 3299 3300 3301 3302
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
3303
          need_prepare_phi_data_ = true;
3304 3305
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
3306
            phi_kernel_context->EmplaceBackAttr(std::move(
3307
                framework::MakePhiIntArrayFromVar(*ins_vector.front())));
3308
          } else {  // ShapeTensorList
3309 3310
            phi_kernel_context->EmplaceBackAttr(
                std::move(framework::MakePhiIntArrayFromVarList(ins_vector)));
3311
          }
3312
        }
3313
        break;
3314

3315 3316
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
3317 3318
            attr_iter,
            Attrs().end(),
3319 3320 3321 3322 3323 3324
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3325
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
3326 3327 3328 3329 3330
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3331
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3332 3333 3334
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3335
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
3336 3337 3338 3339 3340
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3341
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3342 3343 3344
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3345
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
3346 3347 3348 3349 3350
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3351
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3352 3353 3354
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
3355
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
3356 3357 3358 3359 3360
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3361
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3362 3363 3364
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3365
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3366 3367 3368 3369 3370
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3371
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3372
          } break;
3373 3374 3375 3376 3377 3378
          case proto::AttrType::SCALARS: {
            const auto& vec = PADDLE_GET_CONST(
                std::vector<paddle::experimental::Scalar>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list{vec.begin(), vec.end()};
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
3379 3380 3381 3382
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3383 3384
                attr_names[i]));
        }
3385 3386
      } break;
      default: {
3387
        if (attr_iter == Attrs().end()) {
3388
          // TODO(chenweihang): remove this backup searching later
3389 3390 3391 3392 3393 3394 3395 3396 3397
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3398 3399
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3400
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3401
                PADDLE_GET_CONST(float, attr_iter->second));
3402
            break;
3403 3404 3405 3406
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3407
          case phi::AttributeType::INT32:
3408
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3409
                PADDLE_GET_CONST(int, attr_iter->second));
3410 3411
            break;
          case phi::AttributeType::BOOL:
3412
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3413
                PADDLE_GET_CONST(bool, attr_iter->second));
3414 3415
            break;
          case phi::AttributeType::INT64:
3416
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3417
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3418 3419
            break;
          case phi::AttributeType::INT32S:
3420
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3421
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3422
            break;
3423 3424 3425 3426
          case phi::AttributeType::BOOLS:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second));
            break;
3427 3428 3429
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3430
                    PADDLE_GET_CONST(int, attr_iter->second)));
3431
            phi_kernel_context->EmplaceBackAttr(data_type);
3432 3433
          } break;
          case phi::AttributeType::STRING:
3434
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3435
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3436 3437 3438 3439
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3440
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3441
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3442 3443 3444
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3445
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3446 3447
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3448
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3459
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3460
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3461 3462
            break;
          case phi::AttributeType::STRINGS:
3463
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3464
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3465 3466 3467 3468 3469 3470
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3471
        }
3472 3473 3474
      }
    }
  }
3475
  VLOG(4) << "Done attributes";
3476

3477 3478 3479 3480 3481 3482
// Clear All old attrs before add new attrs,
// because sometimes old attrs may be misused.
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->ClearDnnAttr();
3483
    if (!RuntimeAttrs().empty()) need_prepare_phi_data_ = true;
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
  }
#endif

  // Note(YuanRisheng): Now, we can't open code below.
  // Because some unittest run OLD dygraph and ExtraAttr is not supported in OLD
  // dygraph. So, here we use trick that dev_ctx is a global object. We can
  // store ExtraAttr in static graph and when unittest run OLD dygraph, it can
  // obtain these ExtraAttr. We can open this code when OLD dygraph is no longer
  // used.
  /*
  #if defined(PADDLE_WITH_CUDA)
    if(phi::GPUContext::classof(dev_ctx)) {
      phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
      gpu_dnn_ctx->ClearDnnAttr();
    }
  #endif
  */
3501 3502 3503 3504 3505 3506
  // For compatible with Op with extra attrs for specific backend
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
  auto& runtime_attrs = RuntimeAttrs();
  for (const auto& attr_iter : runtime_attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3507
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3508 3509 3510 3511 3512 3513
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  // TODO(chenweihang): Since the pass will still `SetAttr` in the OpDesc,
  // we try to add these Attrs to the RuntimeAttrs, but these OpDesc will lose
  // the RuntimeAttrs information in the process of converting the Graph to
  // the Program, so additional record configuration will be introduced,
S
Shuangchi He 已提交
3514
  // which increases the cost of development and understanding, so we
3515 3516 3517 3518 3519 3520 3521
  // still use Attrs to get and the attributes set by these passes from Attrs
  // for the time being. In the future, it is necessary to clarify the
  // positioning of RuntimeAttrs and expand related functions.
  auto& attrs = Attrs();
  for (const auto& attr_iter : attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3522
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  VLOG(4) << "Done runtime attributes";
#endif

// For compatible with Op with extra input for onednn backend
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto it = ctx.inputs.find(input_name);
      if (it == ctx.inputs.end() || it->second.size() == 0) {
        one_dnn_ctx->SetDnnInput(input_name, nullptr);
      } else {
        auto ins_vector = it->second;
        PADDLE_ENFORCE_EQ(
            ins_vector.size(),
            1UL,
            phi::errors::InvalidArgument(
                "OneDNN's extra input only allows one input tensor."));
        auto* var = ins_vector[0];
        PADDLE_ENFORCE_EQ(var->IsType<phi::DenseTensor>(),
                          true,
                          phi::errors::InvalidArgument(
                              "OneDNN's extra input only can be DenseTensor."));
        one_dnn_ctx->SetDnnInput(input_name, &(var->Get<phi::DenseTensor>()));
      }
    }
  }
  VLOG(4) << "Done runtime extra inputs";
#endif
3557 3558
}

Q
Qiao Longfei 已提交
3559
}  // namespace framework
L
liaogang 已提交
3560
}  // namespace paddle