engine.py 68.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import logging
17
import numbers
18 19
import os
import random
20 21
from collections import defaultdict

22 23
import numpy as np

24
import paddle
25
import paddle.distributed.auto_parallel.utils as auto_utils
26
from paddle import static, utils
27
from paddle.distributed import fleet
28 29 30 31
from paddle.fluid.executor import _to_name_str
from paddle.framework import IrGraph
from paddle.framework import _current_expected_place as _get_device
from paddle.framework import core, in_dygraph_mode
32
from paddle.metric import Metric
33
from paddle.static import InputSpec, Operator, Variable, global_scope
34

35
from ..utils.log_utils import get_logger
Z
zhaoyingli 已提交
36
from .callbacks import config_callbacks
37
from .cluster import Cluster, get_default_cluster
38 39 40
from .converter import Converter
from .cost.estimate_cost import get_cost_from_engine
from .dist_context import DistributedContext, get_default_distributed_context
41 42
from .dist_loader import (
    DistributedDataLoader,
43
    DistributedDataLoaderFromGenerator,
44
)
45 46 47
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .helper import ProgramHelper
48
from .interface import CollectionNames, get_collection
49 50 51 52
from .parallelizer_v2 import Parallelizer
from .planner_v2 import Planner
from .process_group import get_all_process_groups, new_process_group
from .strategy import Strategy
53

54 55

class Engine:
56
    """
57 58
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
59 60 61 62 63 64 65
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
66 67
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
84
            from paddle.distributed.fleet import auto
85 86 87 88 89 90 91 92 93 94
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
95
            loss = paddle.nn.CrossEntropyLoss()
96 97 98 99
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

100 101
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
102 103 104
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
105
            # evaluate
106 107 108 109 110 111 112
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
113
            # load
114 115 116
            engine.load("./my_model")

    """
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
133 134 135 136
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
137 138 139 140 141 142 143 144 145

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
146 147 148
        self._loss = loss

        if optimizer and not isinstance(
149
            optimizer,
150
            (paddle.optimizer.Optimizer, paddle.static.Optimizer),
151
        ):
152 153
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
154
                " or `paddle.static.Optimizer`."
155
            )
156
        self._optimizer = auto_utils.validate_opt(optimizer)
157
        self._orig_optimizer = copy.deepcopy(self._optimizer)
158 159

        metrics = metrics or []
160
        for metric in auto_utils.to_list(metrics):
161 162 163 164 165 166
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
167
        self._metrics = auto_utils.to_list(metrics)
168 169 170 171 172 173 174 175 176 177 178 179 180

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

181
        self._logger = get_logger(logging.INFO)
182
        if os.getenv("POD_NAME"):
183 184
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
185
            )
186
            fleet.init(is_collective=True)
187

188
        self._executor = None
189 190 191
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
192

193 194
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
195
        self._orig_dist_context = get_default_distributed_context()
196
        self._dist_contexts = {}
197 198
        self._fwd_main_progs = {}
        self._fwd_dist_contexts = {}
199 200
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
201 202 203 204
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
205
        self._planners = {}
206 207
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
208 209
            "train": False,
            "eval": False,
210
            "predict": False,
211
        }
212 213 214 215
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
216
        self._losses = []
217

218
        self._mode = None
219 220
        self._skip_build = False
        self._outside_dataloader = False
221
        self._planned_mode = None
222 223
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
224

Z
zhaoyingli 已提交
225 226
        self.history = None

227 228
        paddle.framework.set_flags({'FLAGS_new_executor_sequential_run': 1})

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
247
            raise TypeError(
C
chenxujun 已提交
248
                "Data should be a Dataset or IterableDataset, but received {}.".format(
249 250 251
                    type(data).__name__
                )
            )
252 253
        inputs = auto_utils.to_list(inputs)
        labels = auto_utils.to_list(labels)
254 255

        num_shards = self._strategy.dataset.num_shards
256

257 258 259 260 261 262 263 264 265 266 267 268 269 270
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                spec = InputSpec.from_tensor(item, name)
271
                _adjust_item_spec(num_shards, spec)
272 273 274 275
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
276
            elif isinstance(item, numbers.Number):
277
                specs.append(InputSpec([batch_size], type(item), name))
278 279 280 281 282 283
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

300
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
301
        if in_dygraph_mode() or self._dygraph_mode:
302 303
            raise ValueError("Only support static graph mode.")

304
        if inputs_spec:
305 306 307 308 309
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
310 311 312 313 314 315 316 317 318
            assert isinstance(
                inputs, list
            ), "inputs should be list, but received {}".format(type(inputs))
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
319
        if labels_spec:
320 321 322 323 324
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
325 326 327 328 329 330 331 332 333 334
            assert isinstance(
                labels, list
            ), "labels should be list, but received {}".format(type(labels))
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

335 336 337 338 339 340 341 342 343
        return inputs, labels

    def _prepare_reader(self):
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
344 345 346
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
364 365 366
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
                    for name, data in data[0].items():
                        feeds[name] = data
                else:
                    raise ValueError("Unsupported data {}".format(data))
            elif isinstance(data, dict):
                for name, data in data.items():
                    feeds[name] = data
            else:
                raise ValueError("Unsupported data {}".format(data))
396
        if user_feeds is not None:
397 398 399 400 401
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
402 403
            for name, data in user_feeds.items():
                feeds[name] = data
404 405
        return feeds

406
    def _prepare_fetch(self, user_fetches, mode):
407
        if user_fetches is not None:
408 409 410 411 412
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
413
        fetch_names = []
414
        fetch_indices = []
415

416 417
        def _process_fetch_group(group_name, var_list):
            group_indices = []
418
            for var in var_list:
419 420 421 422 423 424
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
425 426
            if not group_indices:
                fetch_names.append([])
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
            fetch_indices.append(group_indices)

        if mode != "predict":
            _process_fetch_group("loss", self._fetch_vars[mode]["loss"])
        if mode != "predict":
            metrics = self._fetch_vars[mode]["metrics"]
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
            _process_fetch_group("outputs", self._fetch_vars[mode]["outputs"])
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
        var_list = (user_fetches_collection or []) + (user_fetches or [])
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

444 445 446 447 448 449 450 451 452 453
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
454
        logs = {}
455
        if epoch is not None:
Z
zhaoyingli 已提交
456
            logs["epoch"] = epoch
457
        if step is not None:
Z
zhaoyingli 已提交
458
            logs["step"] = step + 1
459
        if lr is not None:
Z
zhaoyingli 已提交
460
            logs["lr"] = lr
461 462
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
463
            # logging loss
464
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
465
            assert len(loss_indices) <= 1
466
            for idx in loss_indices:
Z
zhaoyingli 已提交
467
                logs["loss"] = outs[idx][0]
468
            group_idx += 1
Z
zhaoyingli 已提交
469
            # logging metrics
470 471 472 473 474 475 476 477 478 479
            metric_vars = self._fetch_vars[mode]["metrics"]
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
480
                        for i, res in enumerate(auto_utils.to_list(results)):
Z
zhaoyingli 已提交
481
                            logs[metric.name()[i]] = res
482
                    group_idx += 1
Z
zhaoyingli 已提交
483 484 485 486 487 488 489
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
490 491
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
492 493
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
494 495 496 497
        for name, var_name in collect_fetches:
            if var_name in fetch_names:
                idx = fetch_names.index(var_name)
                logs_fetch[name or var_name] = outs[idx]
Z
zhaoyingli 已提交
498 499
        logs["fetches"] = logs_fetch
        return logs
500

501 502 503 504 505 506 507 508 509 510 511
    def _prepare_program(self, mode):
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
        # Init comm and startup program
        self._initialize(mode)
        self._has_prepared[mode] = True

512
    def _build(self, mode):
513
        if in_dygraph_mode() or self._dygraph_mode:
514
            paddle.disable_static()
515 516 517
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

518
            self.program_helper = ProgramHelper(
519 520 521 522 523
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
524
            )
525
            # build forward main program
526 527
            with utils.unique_name.guard():
                self.program_helper.build_program(mode)
528

529 530 531
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
532

533 534
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
535
            outputs = self.program_helper.output_vars
536
            self._losses = self.program_helper.loss_vars
537
            metrics = self.program_helper.metric_vars
538

539
            paddle.enable_static()
540
        else:
541
            # build program in static graph mode
542 543 544 545
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

546
            outputs = []
547
            metrics = []
548
            self._losses = []
549 550
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
551
            if not self._skip_build:
552 553 554
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
555 556 557 558 559 560 561
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

562
                    outputs = auto_utils.to_list(self._model(*self._inputs))
563

564
                    if mode != "predict" and self._loss:
565 566 567 568 569
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
570
                        self._losses = auto_utils.to_list(
571 572
                            self._loss(*(outputs + self._labels))
                        )
573

574
                    if mode != "predict" and (outputs or self._labels):
575 576
                        for metric in self._metrics:
                            metrics.append(
577
                                auto_utils.to_list(
578 579
                                    metric.compute(*(outputs + self._labels))
                                )
580
                            )
Z
zhaoyingli 已提交
581
            elif mode == "train":
582 583 584
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
585
                self._losses = auto_utils.to_list(self._loss)
586 587 588 589 590 591 592

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True
593 594 595 596 597 598
            self._inputs = [
                auto_utils.set_data_parallel(var) for var in self._inputs
            ]
            self._labels = [
                auto_utils.set_data_parallel(var) for var in self._labels
            ]
599

600
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
601 602

        fetch_vars = {
603
            "outputs": paddle.utils.flatten(outputs),
604
            "loss": self._losses,
605
            "metrics": metrics,
606 607
        }

608 609 610
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

611 612 613
        auto_utils.set_recompute_segments(
            self._model, self._losses, self._strategy, serial_main_prog
        )
614
        self._dist_contexts[mode] = DistributedContext(
615 616 617
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
618 619 620 621 622 623 624 625 626 627 628
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
629 630 631 632 633
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
634
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
635
        self._fwd_main_progs[mode] = serial_main_prog.clone()
636

637 638 639
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
640

641 642 643 644 645 646 647 648
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
649 650

        from .tuner.optimization_tuner import OptimizationTuner
651 652 653 654 655 656 657 658 659

        self._optimization_tuner = OptimizationTuner(
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
660 661 662

        self._optimization_tuner.tune()

663
        if self._tuning.run_after_tuning:
664 665
            # update the strategy
            self._dist_contexts[
666 667
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
668

669 670 671 672 673 674
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

675 676
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
677

678 679 680 681
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
682
        # TODO: check this feed_list
683 684 685 686 687
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

688 689
        self._dp_world_sizes = []
        self._dp_ranks = []
690
        for feed_var in feed_list:
691
            dp_world_size, dp_rank = auto_utils.get_input_split_info(
692
                self._cur_rank, feed_var, self._dist_contexts[mode]
693
            )
694 695
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
696

697
    def _parallel(self, mode, all_ranks=False):
698 699
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
C
chenxujun 已提交
700
        # because we may use it to complete the annotation of the backward and update.
701
        parallelizer = Parallelizer(
Y
yuehuayingxueluo 已提交
702 703 704
            mode,
            self._planners[mode].completer,
            self._dist_contexts[mode],
705
        )
706 707 708 709
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
710 711

    def _init_dist_context(self, mode):
712
        # Init dist_context['mode'] with the first planned dist_context
713 714 715 716 717 718 719 720 721 722
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
723 724 725 726 727 728 729 730
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
731 732 733
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
734
        # Get the current content from the distributed context
735
        self._serial_main_progs[mode] = self._dist_contexts[
736 737
            mode
        ].serial_main_program
738
        self._serial_startup_progs[mode] = self._dist_contexts[
739 740
            mode
        ].serial_startup_program
741
        self._dist_main_progs[mode] = self._dist_contexts[
742 743
            mode
        ].dist_main_programs
744
        self._dist_startup_progs[mode] = self._dist_contexts[
745 746
            mode
        ].dist_startup_programs
747 748
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
Z
zhaoyingli 已提交
749
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
750

751 752 753 754
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
C
caozhou 已提交
755
            cur_rank = self._cur_rank
756 757 758
            # NOTE: After the implementation of the unified dynamic and static communication group
            # initialization mode in the future, the initialization logic of full mode
            # will be removed because port occupation error may occur.
759
            if self._strategy.auto_mode == "full":
760 761 762
                auto_utils.initialize_pg_in_full_mode(
                    all_process_groups, cur_rank
                )
763 764
            else:
                for process_group in all_process_groups:
C
caozhou 已提交
765
                    if cur_rank not in process_group.ranks:
766 767
                        continue
                    process_group.instantiate()
768

769
        self._place = _get_device()
770
        if isinstance(self._place, paddle.framework.CUDAPlace):
771 772 773
            self._place = paddle.framework.CUDAPlace(
                paddle.distributed.ParallelEnv().dev_id
            )
774

775 776 777 778 779
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

780
        if self._dygraph_mode:
781 782
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
783 784 785
            self.program_helper.init(
                dist_main_program, self._place, dist_context
            )
786

787
        if self._executor is None:
788
            self._executor = paddle.static.Executor(self._place)
789 790 791 792 793 794 795 796 797 798
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
799

800
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
801 802 803
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
804 805

        if self._strategy.reinit:
Z
zhaoyingli 已提交
806
            self._logger.info("NOTE: parameters will be re-initialized.")
807 808 809
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            self._executor.run(dist_startup_prog)

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
828 829 830 831 832 833 834 835
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
836
                more than two items, train_sample_split specifies how to split these items into
837
                input and label. The items before it are input and the left are label. Default: None.
838
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
839 840 841
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
842
                is executed in one epoch before stating the next one. If None, it is equal to
843 844
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
845
                evaluation at the end of epoch. No evaluation will be done if set to None.
846
                Default: None. (Unsupported for now)
847
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
848 849
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
850 851
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
852 853 854
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
855 856
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
857 858 859 860
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
861
                0. Default None.
862 863 864 865 866 867 868 869 870 871 872 873
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
874
                from paddle.distributed.fleet import auto
875 876 877 878 879 880 881 882 883
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
884
                loss = paddle.nn.CrossEntropyLoss()
885 886 887 888
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

889
                engine = auto.Engine(model, loss, optimizer, metrics)
890 891 892 893
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
894 895
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
896 897
            train_data, train_sample_split, batch_size
        )
898 899
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
900
        else:
901
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
902

903 904 905 906 907 908 909
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
910 911
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
912

913
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
940 941
                        return_numpy=self._strategy.return_numpy,
                    )
Z
zhaoyingli 已提交
942 943
                except core.EOFException:
                    break
944
                lr = auto_utils.get_lr(self._optimizer)
945 946 947 948 949 950 951 952 953
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
Z
zhaoyingli 已提交
954 955 956
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
957 958 959 960 961 962 963 964 965 966
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
967
                val_logs = {
968
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
969 970 971 972 973 974 975 976 977 978
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
979

980 981 982 983 984 985 986 987 988 989 990
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
991 992 993 994
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
995 996
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
997
                to be a (input, label) pair by default and has two items. If each sample has
998
                more than two items, valid_sample_split specifies how to split these items into
999
                input and label. The items before it are input and the left are label. Default: None.
1000
            batch_size (int, optional): The batch size of valid_data. The user's data will
1001
                be used directly without batching if set to None. Default: 1.
1002 1003
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
1004 1005 1006 1007 1008
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1009
                during evaluating. Default: None. (Unused for now)
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1020
                from paddle.distributed.fleet import auto
1021 1022 1023 1024 1025 1026 1027 1028 1029
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
1030
                loss = paddle.nn.CrossEntropyLoss()
1031 1032
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1033
                engine = auto.Engine(model, loss, metrics=metrics)
1034 1035 1036
                engine.evaluate(valid_dataset, batch_size=64)

        """
1037 1038
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1039 1040
            valid_data, valid_sample_split, batch_size
        )
1041 1042
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1043
        else:
1044
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1045

1046 1047 1048 1049 1050 1051
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1052 1053
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1054

1055
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1056

Z
zhaoyingli 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1067 1068 1069
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1070
        logs = {}
1071
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1072
            cbks.on_batch_begin('eval', step, logs)
1073
            try:
1074 1075
                outs = self._executor.run(
                    self.main_program,
1076
                    fetch_list=fetch_names,
1077
                    use_program_cache=self._strategy.use_cache,
1078 1079
                    return_numpy=self._strategy.return_numpy,
                )
1080
            except core.EOFException:
1081
                break
1082 1083 1084
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1085 1086
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1087
        self._reset_metrics()
Z
zhaoyingli 已提交
1088
        return logs
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1100 1101 1102 1103 1104 1105 1106
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1107
                more than two items, test_sample_split specifies how to split these items into
1108 1109 1110
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1111 1112
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1129
                from paddle.distributed.fleet import auto
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1140
                engine = auto.Engine(model)
1141 1142
                engine.predict(valid_dataset, batch_size=64)
        """
1143 1144
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1145 1146
            test_data, test_sample_split, batch_size
        )
1147 1148
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1149
        else:
1150
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1151

1152 1153 1154 1155 1156 1157
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1158 1159
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1160

1161
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1162

Z
zhaoyingli 已提交
1163 1164 1165 1166 1167
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1168
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1169
            cbks.on_batch_begin('predict', step, logs)
1170
            try:
1171 1172
                outs = self._executor.run(
                    self.main_program,
1173
                    fetch_list=fetch_names,
1174
                    use_program_cache=self._strategy.use_cache,
1175 1176
                    return_numpy=self._strategy.return_numpy,
                )
1177
            except core.EOFException:
1178
                break
1179 1180 1181
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1182 1183 1184 1185 1186
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1204 1205 1206
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1207 1208
            dataset, sample_split, batch_size
        )
1209 1210
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1211
        else:
1212
            self._switch_mode(self._mode)
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1227 1228
            steps_per_epoch=steps_per_epoch,
        )
1229 1230
        return dataloader

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1246 1247 1248
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1249 1250
            dataset, sample_split, batch_size
        )
1251 1252 1253 1254
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1267 1268
            collate_fn=collate_fn,
        )
1269 1270
        return dataloader

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
    ):
1281 1282
        if mode is not None:
            self.to_mode(mode)
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1299 1300
        if inputs or labels:
            self._skip_build = True
1301 1302
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
1303
            )
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
1315 1316 1317
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1318

1319 1320 1321 1322 1323 1324 1325
        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)

1326
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1327 1328 1329 1330
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1331 1332 1333 1334
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1335
            self._prepare_reader()
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1346
        return logs
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1364

1365
        if self._strategy.gradient_merge and batch_size is not None:
1366 1367 1368 1369 1370
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1371
            batch_size //= self._k_steps
1372

1373 1374
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
1375
        dist_main_block = dist_main_prog.global_block()
1376

1377 1378 1379 1380
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1381 1382
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
1383 1384 1385 1386
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1387 1388 1389 1390
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1391 1392

        # insert read op at the end of program
1393
        places = paddle.static.cuda_places()
1394
        with static.program_guard(dist_main_prog, dist_startup_prog):
1395
            dataloader = DistributedDataLoader(
1396
                dataset,
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1412
                data_parallel_world_size=self._dp_world_sizes,
1413 1414
                data_parallel_rank=self._dp_ranks,
            )
1415

1416 1417
        return dataloader

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1432 1433

        if self._strategy.gradient_merge and batch_size is not None:
1434 1435 1436 1437 1438
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
            batch_size //= self._k_steps

        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1478 1479
                data_parallel_rank=self._dp_ranks,
            )
1480 1481 1482 1483 1484 1485
        self._prepare_reader()
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1486 1487
            tune_data, tune_sample_split, batch_size
        )
1488 1489
        self._optimization_tuning(self._mode, tune_data, batch_size)

1490
    def _validate_spec(self, specs):
1491
        specs = auto_utils.to_list(specs)
1492
        self._k_steps = self._strategy.gradient_merge.k_steps
1493 1494
        if specs is not None:
            for i, spec in enumerate(specs):
1495 1496 1497 1498
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1499 1500
                if spec.name is None:
                    raise ValueError(
1501 1502 1503 1504
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1505
                if self._k_steps > 1:
1506
                    shape = list(spec.shape)
1507 1508 1509 1510 1511
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1512
                    shape[0] //= self._k_steps
1513
                    spec.shape = shape
1514 1515 1516
        return specs or []

    def _validate_vars(self, vars):
1517
        vars = auto_utils.to_list(vars)
1518 1519 1520 1521 1522
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1523

1524 1525 1526 1527
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1528 1529 1530 1531
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1532 1533 1534
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
1535
            metrics_name.extend(auto_utils.to_list(m.name()))
Z
zhaoyingli 已提交
1536 1537
        return metrics_name

1538
    def _switch_mode(self, mode):
1539 1540 1541
        assert (
            mode in self._dist_main_progs
        ), "{} model is not ready, please call `prepare()` first.".format(mode)
1542
        self.to_mode(mode)
Z
zhaoyingli 已提交
1543
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
1544

1545
    def to_mode(self, mode):
1546 1547 1548 1549 1550
        assert mode in [
            "train",
            "eval",
            "predict",
        ], "mode {} should be one of ['train', 'eval', 'predict']".format(mode)
1551 1552
        self._mode = mode

1553 1554 1555
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        program = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
1556
        cur_dist_attr = auto_utils.get_dist_attr(program, dist_context)
1557 1558
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        for name, param in program.state_dict().items():
            param_array = np.array(param)
            if name not in state_dict:
                continue
            if param_array.dtype != state_dict[name].dtype:
                self._logger.info(
                    "cast {}'s dtype from '{}' to '{}'".format(
                        name,
                        str(state_dict[name].dtype),
                        str(param_array.dtype),
                    )
                )
                state_dict[name] = state_dict[name].astype(param_array.dtype)
1572 1573 1574
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1575 1576
        """
        Saves the model, parameters, optimizer state to path.
1577 1578 1579 1580 1581 1582 1583
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1584
                for inference only. If `training` is set to True, the optimizer state
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1597
                from paddle.distributed.fleet import auto
1598 1599 1600 1601 1602 1603 1604 1605 1606
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1607
                loss = paddle.nn.CrossEntropyLoss()
1608 1609 1610 1611
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1612
                engine = auto.Engine(model, loss, optimizer, metrics)
1613 1614 1615 1616
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1617

1618
        """
1619
        if training:
Z
zhaoyingli 已提交
1620 1621 1622 1623
            assert self._mode in self._serial_main_progs
            serial_program = self._serial_main_progs[self._mode]
            dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
            dist_context = self._dist_contexts[self._mode]
1624 1625 1626 1627 1628 1629
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1630
        else:
Z
zhaoyingli 已提交
1631 1632 1633 1634
            assert "predict" in self._dist_main_progs
            feed_vars = self._feed_vars["predict"]['inputs']
            fetch_vars = self._fetch_vars["predict"]['outputs']
            dist_main_prog = self._dist_main_progs["predict"][self._cur_rank]
1635
            if self._strategy.qat.enable and self._strategy.qat.onnx_format:
1636
                from paddle.static.quantization import QuantWeightPass
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

                self._logger.info("export quantized model.")
                self._logger.info(
                    "convert config {}".format(self._strategy.qat.to_dict())
                )
                test_graph = IrGraph(
                    core.Graph(dist_main_prog.desc), for_test=True
                )
                quant_weight_pass = QuantWeightPass(global_scope(), self._place)
                for sub_graph in test_graph.all_sub_graphs():
                    quant_weight_pass.apply(sub_graph)
                dist_main_prog = test_graph.to_program()
1649 1650 1651 1652 1653 1654 1655
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1656

1657 1658 1659 1660 1661 1662
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1663
                optimizer states.
1664 1665 1666
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1667
                mismatch shape). Default: True.
1668
            load_optimizer (bool, optional): If True, the stored optimizer
1669
                states is restored. Otherwise, the optimizer states is initialized
1670
                from scratch. Default: True.
1671 1672 1673 1674 1675 1676 1677 1678 1679

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1680
                from paddle.distributed.fleet import auto
1681 1682 1683 1684 1685 1686 1687 1688 1689
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1690
                loss = paddle.nn.CrossEntropyLoss()
1691 1692 1693 1694
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1695
                engine = auto.Engine(model, loss, optimizer, metrics)
1696 1697 1698 1699 1700
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1701

1702 1703 1704
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1705 1706
            path, load_optimizer
        )
1707
        return self._state_dict, self._dist_attr
1708

1709
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
1720
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1721 1722 1723 1724 1725 1726 1727

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
1728
            self._logger.info(
1729 1730 1731 1732 1733
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
1734 1735 1736
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
1737 1738
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
1739
                    mode, list(self._has_prepared.keys())
1740 1741
                )
            )
1742 1743
        self.to_mode(mode)

1744 1745 1746
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1747 1748 1749
            self._build(mode)
            self._plan(mode)
        else:
1750
            if in_dygraph_mode() or self._dygraph_mode:
1751
                raise ValueError(
1752 1753 1754 1755 1756
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                )
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
1757
                )
1758 1759 1760 1761 1762 1763 1764 1765
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1766 1767 1768 1769 1770 1771

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1772 1773
    @property
    def main_program(self):
1774
        return self._dist_main_progs[self._mode][self._cur_rank]
1775 1776 1777

    @property
    def startup_program(self):
1778
        return self._dist_startup_progs[self._mode][self._cur_rank]
1779 1780 1781

    @property
    def dist_context(self):
1782
        return self._dist_contexts[self._mode]
1783 1784 1785

    @property
    def serial_main_program(self):
1786
        return self._serial_main_progs[self._mode]
1787 1788 1789

    @property
    def serial_startup_program(self):
1790
        return self._serial_startup_progs[self._mode]
1791 1792 1793

    @property
    def fetch_vars(self):
1794
        return self._fetch_vars[self._mode]
1795 1796 1797

    @property
    def inputs(self):
1798
        return self._inputs
1799 1800 1801

    @property
    def labels(self):
1802
        return self._labels