test_mkldnn_op_inplace.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <cstdlib>
#include <memory>
#include <random>
19

20 21 22 23 24 25 26 27
#include "gtest/gtest.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
28
#include "paddle/phi/core/kernel_registry.h"
29

30
USE_OP_ITSELF(elementwise_add);
31
USE_OP_DEVICE_KERNEL(elementwise_add, MKLDNN);
32
USE_OP_ITSELF(relu);
33
PD_DECLARE_KERNEL(relu, OneDNN, ALL_LAYOUT);
34
USE_OP_ITSELF(softmax);
35
USE_OP_DEVICE_KERNEL(softmax, MKLDNN);
36

37 38
PD_DECLARE_KERNEL(softmax, CPU, ALL_LAYOUT);

39 40 41
namespace paddle {
namespace operators {

42 43 44 45 46
struct InputVars {
  std::string name;
  framework::LoDTensor *tensor;
};

47
template <typename T>
48 49 50 51
bool TestMain(const platform::Place &place,
              const std::string &op_type,
              const framework::DDim &dims,
              const int num_inputs) {
52 53
  framework::Scope scope;

54 55
  std::vector<InputVars> input_names = {
      {"x", scope.Var("x")->GetMutable<framework::LoDTensor>()},
56 57 58 59 60 61 62 63 64 65 66 67
      {"x1",
       num_inputs > 1 ? scope.Var("x1")->GetMutable<framework::LoDTensor>()
                      : nullptr},
      {"x2",
       num_inputs > 2 ? scope.Var("x2")->GetMutable<framework::LoDTensor>()
                      : nullptr},
      {"x3",
       num_inputs > 3 ? scope.Var("x3")->GetMutable<framework::LoDTensor>()
                      : nullptr},
      {"x4",
       num_inputs > 4 ? scope.Var("x4")->GetMutable<framework::LoDTensor>()
                      : nullptr}};
68
  auto *y = scope.Var("y")->GetMutable<framework::LoDTensor>();
69

70
  // Initialize input data
71 72 73
  std::uniform_real_distribution<T> dist(static_cast<T>(10.0),
                                         static_cast<T>(20.0));
  std::mt19937 engine;
74
  size_t numel = static_cast<size_t>(phi::product(dims));
75 76 77 78 79 80 81
  for (int i = 0; i < num_inputs; ++i) {
    input_names[i].tensor->Resize(dims);
    auto data_ptr = input_names[i].tensor->mutable_data<T>(place);
    for (size_t i = 0; i < numel; ++i) {
      data_ptr[i] = dist(engine);
    }
  }
82

83 84 85
  // Initialize output
  y->Resize(dims);
  auto y_ptr = y->mutable_data<T>(place);
86 87 88 89 90 91 92
  for (size_t i = 0; i < numel; ++i) {
    y_ptr[i] = static_cast<T>(0);
  }

  auto &pool = platform::DeviceContextPool::Instance();

  // Out of place (reference) computation
93 94 95 96 97 98 99 100 101 102
  auto op_ref =
      num_inputs > 1
          ? framework::OpRegistry::CreateOp(op_type,
                                            {{"X", {"x"}}, {"Y", {"x1"}}},
                                            {{"Out", {"y"}}},
                                            {{"use_mkldnn", {true}}})
          : framework::OpRegistry::CreateOp(op_type,
                                            {{"X", {"x"}}},
                                            {{"Out", {"y"}}},
                                            {{"use_mkldnn", {true}}});
103

104 105 106 107 108 109 110
  op_ref->Run(scope, place);
  pool.Get(place)->Wait();

  // Get reference (out of place) result
  auto &ref_tensor = scope.FindVar("y")->Get<framework::LoDTensor>();

  // In-place (to be tested) computation
111 112 113 114 115 116 117 118 119
  auto op = num_inputs > 1
                ? framework::OpRegistry::CreateOp(op_type,
                                                  {{"X", {"x"}}, {"Y", {"x1"}}},
                                                  {{"Out", {"x"}}},
                                                  {{"use_mkldnn", {true}}})
                : framework::OpRegistry::CreateOp(op_type,
                                                  {{"X", {"x"}}},
                                                  {{"Out", {"x"}}},
                                                  {{"use_mkldnn", {true}}});
120

121 122 123 124 125 126
  op->Run(scope, place);
  platform::DeviceContextPool::Instance().Get(place)->Wait();

  // Get in-place result
  auto &out_tensor = scope.FindVar("x")->Get<framework::LoDTensor>();
  PADDLE_ENFORCE_EQ(
127 128
      &out_tensor,
      input_names[0].tensor,
129 130 131 132 133 134 135 136 137 138 139 140 141
      platform::errors::InvalidArgument(
          "Input and output vars should share tensor for In-place test"));

  // compare results
  auto *ref_ptr = ref_tensor.data<T>();
  auto *out_ptr = out_tensor.data<T>();
  bool is_equal = std::equal(out_ptr, out_ptr + numel, ref_ptr);
  return is_equal;
}

TEST(test_softmax_inplace, cpu_place) {
  framework::DDim dims({32, 64});
  platform::CPUPlace p;
142 143 144
  ASSERT_TRUE(TestMain<float>(p, "softmax", dims, 1));
}

145 146 147 148 149 150
TEST(test_relu_inplace, cpu_place) {
  framework::DDim dims({1, 12, 20, 20});
  platform::CPUPlace p;
  ASSERT_TRUE(TestMain<float>(p, "relu", dims, 1));
}

151 152
}  // namespace operators
}  // namespace paddle