pd_ops.cc 5.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/dialect/pd_ops.h"

17 18
#include <mlir/IR/Matchers.h>
#include <mlir/IR/PatternMatch.h>
19
#include "paddle/infrt/dialect/infrt/infrt_dialect.h"
Y
Yan Chunwei 已提交
20 21
#include "paddle/infrt/dialect/infrt_base.h"

22 23
#define GET_OP_CLASSES
#include "paddle/infrt/dialect/pd_ops.cpp.inc"  // NOLINT
24 25
#define GET_OP_CLASSES
#include "paddle/infrt/dialect/pd_extra_ops.cpp.inc"  // NOLINT
26 27 28

#include "paddle/infrt/dialect/rewrite.hpp.inc"  // NOLINT

Y
Yan Chunwei 已提交
29 30
namespace mlir {
namespace pd {
31

Y
Yan Chunwei 已提交
32 33 34 35 36
PaddleDialect::PaddleDialect(MLIRContext *context)
    : Dialect("pd", context, TypeID::get<PaddleDialect>()) {
  addOperations<
#define GET_OP_LIST
#include "paddle/infrt/dialect/pd_ops.cpp.inc"  // NOLINT
37 38 39
      ,
#define GET_OP_LIST
#include "paddle/infrt/dialect/pd_extra_ops.cpp.inc"  // NOLINT
Y
Yan Chunwei 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
      >();
}

mlir::Operation *PaddleDialect::materializeConstant(mlir::OpBuilder &builder,
                                                    mlir::Attribute value,
                                                    mlir::Type type,
                                                    mlir::Location loc) {
  return builder.create<ConstantOp>(loc, value);
}

void ConstantOp::build(OpBuilder &builder,
                       OperationState &state,
                       Attribute value) {
  if (auto elem_attr = value.dyn_cast<ElementsAttr>()) {
    return ConstantOp::build(builder, state, elem_attr);
  } else if (value.isa<BoolAttr, FloatAttr, IntegerAttr>()) {
    ShapedType type = RankedTensorType::get(/*shape=*/{}, value.getType());
    state.addAttribute("value", DenseElementsAttr::get(type, value));
    state.addTypes(type);
    return;
  }
  llvm_unreachable("unsupported attribute type for building pd.constant");
}

LogicalResult ConstantOp::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(attributes.get("value").getType());
  return success();
}
74 75
mlir::OpFoldResult ConstantOp::fold(
    ::llvm::ArrayRef<mlir::Attribute> operands) {
Y
Yan Chunwei 已提交
76 77
  return value();
}
78
/*
Y
Yan Chunwei 已提交
79 80 81 82 83 84 85 86 87 88
LogicalResult ElementwiseAdd::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}
89 90 91
*/

void Elementwise_addOp::getCanonicalizationPatterns(
92
    mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
Y
Yan Chunwei 已提交
93 94 95
  results.insert<FuseMulAdd>(context);
}

96
/*
97
mlir::OpFoldResult ElementwiseAdd::fold(
Y
Yan Chunwei 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    llvm::ArrayRef<mlir::Attribute> operands) {
  if (getElementTypeOrSelf(getType()).isa<FloatType>()) {
    if (!operands[0] || !operands[1]) return {};
    DenseElementsAttr lhs = operands[0].dyn_cast<DenseElementsAttr>();
    DenseElementsAttr rhs = operands[1].dyn_cast<DenseElementsAttr>();
    if (!lhs || !rhs) return {};
    ShapedType type = getType().template cast<ShapedType>();
    if (!type.hasStaticShape()) return {};
    Type etype = type.getElementType();
    if (!etype.isa<FloatType>()) return {};
    SmallVector<APFloat, 6> values;
    values.reserve(lhs.getNumElements());
    for (const auto zip :
         llvm::zip(lhs.getValues<APFloat>(), rhs.getValues<APFloat>())) {
      values.push_back(
          std::plus<APFloat>()(std::get<0>(zip), std::get<1>(zip)));
    }
    return DenseElementsAttr::get(type, values);
  }
  return {};
}

LogicalResult ElementwiseDiv::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}

LogicalResult ElementwiseMul::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}

LogicalResult ElementwiseSub::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}

LogicalResult MulOp::inferReturnTypes(
    MLIRContext *context,
    Optional<Location> location,
    ValueRange operands,
    DictionaryAttr attributes,
    RegionRange regions,
    SmallVectorImpl<Type> &inferredReturnTypes) {
  inferredReturnTypes.push_back(operands[0].getType());
  return success();
}

void ReluOp::getCanonicalizationPatterns(
165
    mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
Y
Yan Chunwei 已提交
166 167 168 169
  results.insert<FuseFCRelu>(context);
}

void FusedRepeatedFCRelu::getCanonicalizationPatterns(
170
    mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
Y
Yan Chunwei 已提交
171 172 173 174
  results.insert<FuseRepeatedFCRelu2>(context);
}

void BatchNormOp::getCanonicalizationPatterns(
175
    mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
Y
Yan Chunwei 已提交
176
  results.insert<FuseBatchNormWithConvPattern>(context);
177
}*/
Y
Yan Chunwei 已提交
178 179 180

}  // namespace pd
}  // namespace mlir