concat_op.h 7.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <string>
18
#include <utility>
19
#include <vector>
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/op_registry.h"
C
chengduo 已提交
21
#include "paddle/fluid/operators/math/concat_and_split.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/operators/strided_memcpy.h"
23
#include "paddle/fluid/operators/utils.h"
24 25 26

namespace paddle {
namespace operators {
27 28
static inline framework::DDim ComputeAndCheckShape(
    const bool is_runtime, const std::vector<framework::DDim>& inputs_dims,
29
    const size_t axis) {
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
  const size_t n = inputs_dims.size();
  auto out_dims = inputs_dims[0];
  size_t in_zero_dims_size = out_dims.size();
  for (size_t i = 1; i < n; i++) {
    for (size_t j = 0; j < in_zero_dims_size; j++) {
      if (j == axis) {
        if (is_runtime) {
          out_dims[axis] += inputs_dims[i][j];
        } else {
          if (inputs_dims[i][j] == -1) {
            out_dims[axis] = -1;
          } else {
            out_dims[axis] += inputs_dims[i][j];
          }
        }
      } else {
        bool check_shape =
            is_runtime || (out_dims[j] > 0 && inputs_dims[i][j] > 0);
        if (check_shape) {
          // check all shape in run time
          PADDLE_ENFORCE_EQ(
              inputs_dims[0][j], inputs_dims[i][j],
52 53 54 55 56
              platform::errors::InvalidArgument(
                  "The shape of input[%d] must be equal to input[0]. "
                  "But received input[0]'s shape = "
                  "[%s], input[%d]'s shape = [%s].",
                  i, inputs_dims[0], i, inputs_dims[i]));
57 58 59 60 61 62
        }
      }
    }
  }
  return out_dims;
}
63

64
static inline int64_t ComputeAxis(int64_t axis, int64_t rank) {
65 66 67 68 69
  PADDLE_ENFORCE_EQ(
      axis >= -rank && axis < rank, true,
      platform::errors::InvalidArgument(
          "The axis is expected to be in range of [%d, %d), but got %d", -rank,
          rank, axis));
70 71 72 73 74 75
  if (axis < 0) {
    axis = axis + rank;
  }
  return axis > 0 ? axis : 0;
}

Q
QI JUN 已提交
76
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
77
class ConcatKernel : public framework::OpKernel<T> {
78 79
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
80 81
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    framework::LoDTensor* out = ctx.Output<framework::LoDTensor>("Out");
82 83 84
    PADDLE_ENFORCE_NOT_NULL(
        ins[0], platform::errors::NotFound(
                    " The first input of concat should not be null."));
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    auto axis = ctx.Attr<int>("axis");
    bool need_resize_out_dims = false;
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
      need_resize_out_dims = true;
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));

    if (need_resize_out_dims) {
      const size_t n = ins.size();
      std::vector<framework::DDim> ins_dims(n);
      for (size_t i = 0; i < n; i++) {
        ins_dims[i] = ins[i]->dims();
      }

      framework::DDim out_dims = ComputeAndCheckShape(true, ins_dims, axis);
      out->Resize(out_dims);
    }
Y
Yancey1989 已提交
105 106
    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);
C
chengduoZH 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    // If axis is 0, the lod of the output is not the same as inputs.
    if (axis == 0 && ins[0]->lod().size() > 0) {
      size_t lod_size_0 = ins[0]->lod().size();
      size_t lod_size = lod_size_0;
      for (size_t i = 1; i < ins.size(); ++i) {
        if (ins[i]->lod().size() > 0) {
          PADDLE_ENFORCE_EQ(
              ins[i]->lod().size(), lod_size_0,
              platform::errors::Unimplemented(
                  "The lod level of all input LoDTensors should be same. "
                  "Maybe different lod level of input LoDTensors can concat,"
                  " it is not supported currently."));
        } else {
          lod_size = 0;
          break;
        }
      }
      if (lod_size) {
        auto* out_lod = out->mutable_lod();
        for (size_t i = 1; i < ins.size(); ++i) {
          auto in_lod = ConvertToLengthBasedLoD(ins[i]->lod());
          AppendLoD(out_lod, in_lod);
        }
      }
    }

C
chengduoZH 已提交
134 135 136 137
    // Sometimes direct copies will be faster, this maybe need deeply analysis.
    if (axis == 0 && ins.size() < 10) {
      size_t output_offset = 0;
      for (auto* in : ins) {
138 139 140
        if (!in || in->numel() == 0UL) {
          continue;
        }
C
chengduoZH 已提交
141 142 143 144 145 146 147 148
        auto in_stride = framework::stride_numel(in->dims());
        auto out_stride = framework::stride_numel(out->dims());
        StridedNumelCopyWithAxis<T>(ctx.device_context(), axis,
                                    out->data<T>() + output_offset, out_stride,
                                    in->data<T>(), in_stride, in_stride[axis]);
        output_offset += in_stride[axis];
      }
    } else {
149
      std::vector<framework::Tensor> inputs;
C
chengduoZH 已提交
150
      for (size_t j = 0; j < ins.size(); ++j) {
151 152 153 154 155
        if (ins[j] && ins[j]->numel() > 0) {
          inputs.push_back(*ins[j]);
        } else {
          continue;
        }
C
chengduoZH 已提交
156 157 158 159
      }
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      paddle::operators::math::ConcatFunctor<DeviceContext, T> concat_functor;
      concat_functor(dev_ctx, inputs, static_cast<int>(axis), out);
160 161 162 163
    }
  }
};

Q
QI JUN 已提交
164
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
165
class ConcatGradKernel : public framework::OpKernel<T> {
166 167
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
Q
qiaolongfei 已提交
168 169
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
170
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
H
hong 已提交
171
    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));
172 173 174 175 176 177 178 179 180 181 182 183
    auto outs =
        ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));

    {
      auto dx = outs;
      auto x = ins;
      for (size_t i = 0; i < dx.size(); ++i) {
        if (dx[i] != nullptr) {
          dx[i]->set_lod(x[i]->lod());
        }
      }
    }
184 185 186
    PADDLE_ENFORCE_NOT_NULL(
        ins[0], platform::errors::NotFound(
                    "The first input of concat should not be null."));
Y
Yancey1989 已提交
187

188 189 190 191 192 193 194
    auto axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));
Q
qiaolongfei 已提交
195 196 197
    // get output tensor that the name is not kEmptyVarName
    std::vector<framework::Tensor*> outputs;
    for (size_t j = 0; j < outs.size(); ++j) {
198 199
      if (out_var_names[j] != framework::kEmptyVarName &&
          outs[j]->numel() != 0UL) {
Q
qiaolongfei 已提交
200 201 202 203 204 205
        outs[j]->mutable_data<T>(ctx.GetPlace());
        outputs.push_back(outs[j]);
      } else {
        outputs.push_back(nullptr);
      }
    }
C
chengduo 已提交
206
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
Q
qiaolongfei 已提交
207

C
chengduoZH 已提交
208 209
    // Sometimes direct copies will be faster, this maybe need deeply analysis.
    if (axis == 0 && outs.size() < 10) {
C
chengduo 已提交
210 211 212
      std::vector<const framework::Tensor*> ref_shape;
      ref_shape.insert(ref_shape.begin(), ins.begin(), ins.end());
      StridedMemcpyWithAxis0<T>(dev_ctx, *out_grad, ref_shape, &outputs);
C
chengduoZH 已提交
213
    } else {
C
chengduo 已提交
214 215 216
      math::SplitFunctor<DeviceContext, T> split_functor;
      split_functor(dev_ctx, *out_grad, ctx.MultiInput<framework::Tensor>("X"),
                    static_cast<int>(axis), &outputs);
C
chengduoZH 已提交
217
    }
218 219 220 221 222
  }
};

}  // namespace operators
}  // namespace paddle