elementwise_op_impl.cu.h 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

namespace paddle {
namespace operators {

enum ElementwiseType { kUnary = 1, kBinary = 2 };

template <typename T, int Size>
struct alignas(sizeof(T) * Size) CudaAlignedVector {
  T val[Size];
};

template <typename T>
int GetVectorizedSizeImpl(const T *pointer) {
  uint64_t address = reinterpret_cast<uint64_t>(pointer);
  constexpr int vec4 =
      std::alignment_of<CudaAlignedVector<T, 4>>::value;  // NOLINT
  constexpr int vec2 =
      std::alignment_of<CudaAlignedVector<T, 2>>::value;  // NOLINT
  if (address % vec4 == 0) {
    return 4;
  } else if (address % vec2 == 0) {
    return 2;
  }
  return 1;
}

template <typename T>
int GetVectorizedSize(const std::vector<const framework::Tensor *> &ins,
                      const std::vector<framework::Tensor *> &outs) {
  int vec_size = 4;
  for (auto iter = ins.begin(); iter != ins.end(); ++iter) {
    vec_size =
        std::min<int>(vec_size, GetVectorizedSizeImpl((*iter)->data<T>()));
  }
  for (auto iter = outs.begin(); iter != outs.end(); ++iter) {
    vec_size =
        std::min<int>(vec_size, GetVectorizedSizeImpl((*iter)->data<T>()));
  }
  return vec_size;
}

template <ElementwiseType ET, int VecSize, typename T>
struct ElementwiseDataWrapper {
  T *out;
  const T *in0;
  const T *in1;
  __device__ ElementwiseDataWrapper(T *out, const T *in0,
                                    const T *in1 = nullptr)
      : out(out), in0(in0), in1(in1) {}

  using VecType = CudaAlignedVector<T, VecSize>;

  inline __device__ void load_vector(VecType args[], int idx) {
    const VecType *x_vec = reinterpret_cast<const VecType *>(in0);
    args[0] = x_vec[idx];
    if (ET == ElementwiseType::kBinary) {
      const VecType *y_vec = reinterpret_cast<const VecType *>(in1);
      args[1] = y_vec[idx];
    }
  }

  inline __device__ void load_scalar(T args[], int idx) {
    args[0] = in0[idx];
    if (ET == ElementwiseType::kBinary) {
      args[1] = in1[idx];
    }
  }

  inline __device__ void store_vector(VecType res, int idx) {
    VecType *out_vec = reinterpret_cast<VecType *>(out);
    out_vec[idx] = res;
  }

  inline __device__ void store_scalar(T res, int idx) { out[idx] = res; }
};

template <ElementwiseType ET, int VecSize, typename T, typename Functor>
__device__ void VectorizedKernelImpl(
    ElementwiseDataWrapper<ET, VecSize, T> data, int size, Functor func,
    int tid) {
  using VecType = CudaAlignedVector<T, VecSize>;
  VecType ins_vec[ET];
  VecType out_vec;
  T *ins_ptr[ET];
  T *out_ptr;
#pragma unroll
  for (int i = 0; i < ET; ++i) {
    ins_ptr[i] = reinterpret_cast<T *>(&(ins_vec[i]));
  }
  out_ptr = reinterpret_cast<T *>(&out_vec);

  // load
  data.load_vector(ins_vec, tid);

// compute
#pragma unroll
  for (int i = 0; i < VecSize; ++i) {
    T ins[ET];
#pragma unroll
    for (int j = 0; j < ET; ++j) {
      ins[j] = ins_ptr[j][i];
    }
    out_ptr[i] = func(ins);
  }

  // store
  data.store_vector(out_vec, tid);
}

template <ElementwiseType ET, typename T, typename Functor>
__device__ void ScalarKernelImpl(ElementwiseDataWrapper<ET, 1, T> data,
                                 int size, Functor func, int start,
                                 int remain) {
  T ins[ET];
  T out;

  for (int i = 0; i < remain; ++i) {
    int idx = start + i;
    // load
    data.load_scalar(ins, idx);
    // compute
    out = func(ins);
    // store
    data.store_scalar(out, idx);
  }
}

template <ElementwiseType ET, int VecSize, typename T, typename Functor>
__global__ void VectorizedKernel(const T *__restrict__ in0,
                                 const T *__restrict__ in1, T *out, int size,
                                 Functor func) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int remain = size - VecSize * tid;
  remain = remain > 0 ? remain : 0;
  if (remain >= VecSize) {
    auto data = ElementwiseDataWrapper<ET, VecSize, T>(out, in0, in1);
    VectorizedKernelImpl(data, size, func, tid);
  } else {
    auto data = ElementwiseDataWrapper<ET, 1, T>(out, in0, in1);
    ScalarKernelImpl(data, size, func, tid * VecSize, remain);
  }
}

template <ElementwiseType ET, typename T, typename Functor>
__global__ void ScalarKernel(const T *__restrict__ in0,
                             const T *__restrict__ in1, T *out, int size,
                             Functor func) {
  auto data = ElementwiseDataWrapper<ET, 1, T>(out, in0, in1);
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int remain = tid < size ? 1 : 0;
  ScalarKernelImpl(data, size, func, tid, remain);
}

template <ElementwiseType ET, typename T, typename Functor>
void LaunchElementwiseCudaKernel(
    const platform::CUDADeviceContext &ctx,
    const std::vector<const framework::Tensor *> &ins,
    std::vector<framework::Tensor *> *outs, Functor func) {
  // calculate the max vec_size for all ins and outs
  auto size = ins[0]->numel();
  int vec_size = GetVectorizedSize<T>(ins, *outs);
  int block_size = PADDLE_CUDA_THREAD_SIZE;
  int grid_size =
      ((size + vec_size - 1) / vec_size + block_size - 1) / block_size;
  const T *in0 = ins[0]->data<T>();
  const T *in1 = (ET == ElementwiseType::kBinary) ? ins[1]->data<T>() : nullptr;
  T *out = (*outs)[0]->data<T>();
  // cuda kernel
  auto stream = ctx.stream();
  switch (vec_size) {
    case 4:
      VectorizedKernel<ET, 4><<<grid_size, block_size, 0, stream>>>(
          in0, in1, out, size, func);
      break;
    case 2:
      VectorizedKernel<ET, 2><<<grid_size, block_size, 0, stream>>>(
          in0, in1, out, size, func);
      break;
    case 1:
      ScalarKernel<ET><<<grid_size, block_size, 0, stream>>>(in0, in1, out,
                                                             size, func);
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported vectorized size: %d !", vec_size));
      break;
  }
}

}  // namespace operators
}  // namespace paddle