op_registry.h 11.1 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17
#include <map>
18
#include <memory>
19 20
#include <string>
#include <tuple>
S
sneaxiy 已提交
21
#include <type_traits>
M
minqiyang 已提交
22 23
#include <unordered_map>
#include <unordered_set>
24
#include <vector>
25

Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/grad_op_desc_maker.h"
D
dzhwinter 已提交
27
#include "paddle/fluid/framework/inplace_op_inference.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
Y
Yi Wang 已提交
29 30 31 32
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type_inference.h"
H
hong 已提交
33 34
#include "paddle/fluid/imperative/dygraph_grad_maker.h"
#include "paddle/fluid/imperative/type_defs.h"
35 36 37 38 39 40 41 42

namespace paddle {
namespace framework {
namespace details {

enum OpInfoFillType {
  kOperator = 0,
  kOpProtoAndCheckerMaker = 1,
Y
Yu Yang 已提交
43
  kGradOpDescMaker = 2,
44
  kVarTypeInference = 3,
D
dzhwinter 已提交
45
  kShapeInference = 4,
S
sneaxiy 已提交
46 47
  kInplaceOpInference = 5,
  kNoNeedBufferVarsInference = 6,
H
hong 已提交
48
  kGradOpBaseMaker = 7,
S
sneaxiy 已提交
49
  kUnknown = -1
50 51
};

S
sneaxiy 已提交
52 53 54 55 56 57 58 59 60 61 62
namespace internal {
template <typename T, OpInfoFillType kType>
struct TypePair {
  using Type = T;
  static constexpr OpInfoFillType kFillType = kType;
};

using OpRegistryClasses = std::tuple<                                // NOLINT
    TypePair<OperatorBase, kOperator>,                               // NOLINT
    TypePair<OpProtoAndCheckerMaker, kOpProtoAndCheckerMaker>,       // NOLINT
    TypePair<GradOpDescMakerBase, kGradOpDescMaker>,                 // NOLINT
H
hong 已提交
63
    TypePair<imperative::GradOpBaseMakerBase, kGradOpBaseMaker>,     // NOLINT
S
sneaxiy 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    TypePair<VarTypeInference, kVarTypeInference>,                   // NOLINT
    TypePair<InferShapeBase, kShapeInference>,                       // NOLINT
    TypePair<InplaceOpInference, kInplaceOpInference>,               // NOLINT
    TypePair<NoNeedBufferVarsInference, kNoNeedBufferVarsInference>  // NOLINT
    >;

static constexpr int kOpRegistryClassNumber =
    std::tuple_size<OpRegistryClasses>::value;

template <typename T, int kPos, bool kIsBounded /* = true*/>
struct IsMatchedBaseTypeImpl {
  using PairType = typename std::tuple_element<kPos, OpRegistryClasses>::type;
  static constexpr bool kValue =
      std::is_base_of<typename PairType::Type, T>::value;
};

template <typename T, int kPos>
struct IsMatchedBaseTypeImpl<T, kPos, false> {
  static constexpr bool kValue = false;
};

template <typename T, int kPos>
static inline constexpr bool IsMatchedBaseType() {
  return IsMatchedBaseTypeImpl<
      T, kPos, (kPos >= 0 && kPos < kOpRegistryClassNumber)>::kValue;
}

template <typename T, int kStart, int kEnd, bool kIsEnd, bool kIsMatched>
struct OpInfoFillTypeGetterImpl {};

// This case should not happen
template <typename T, int kStart, int kEnd>
struct OpInfoFillTypeGetterImpl<T, kStart, kEnd, true, true> {};

template <typename T, int kStart, int kEnd>
struct OpInfoFillTypeGetterImpl<T, kStart, kEnd, true, false> {
  static constexpr OpInfoFillType kType = kUnknown;
};

template <typename T, int kStart, int kEnd>
struct OpInfoFillTypeGetterImpl<T, kStart, kEnd, false, false> {
  static constexpr OpInfoFillType kType =
      OpInfoFillTypeGetterImpl<T, kStart + 1, kEnd, kStart + 1 == kEnd,
                               IsMatchedBaseType<T, kStart + 1>()>::kType;
};

template <typename T, int kStart, int kEnd>
struct OpInfoFillTypeGetterImpl<T, kStart, kEnd, false, true> {
  using PairType = typename std::tuple_element<kStart, OpRegistryClasses>::type;
  static constexpr OpInfoFillType kType = PairType::kFillType;
};

template <typename T>
using OpInfoFillTypeGetter =
    OpInfoFillTypeGetterImpl<T, 0, kOpRegistryClassNumber,
                             kOpRegistryClassNumber == 0,
                             IsMatchedBaseType<T, 0>()>;

}  // namespace internal

124 125 126
template <typename T>
struct OpInfoFillTypeID {
  static constexpr OpInfoFillType ID() {
S
sneaxiy 已提交
127
    return internal::OpInfoFillTypeGetter<T>::kType;
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  }
};

template <typename T, OpInfoFillType = OpInfoFillTypeID<T>::ID()>
struct OpInfoFiller;

template <size_t I, bool at_end, typename... ARGS>
class OperatorRegistrarRecursive;

template <size_t I, typename... ARGS>
class OperatorRegistrarRecursive<I, false, ARGS...> {
 public:
  using T = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
  OperatorRegistrarRecursive(const char* op_type, OpInfo* info) {
    OpInfoFiller<T> fill;
    fill(op_type, info);
    constexpr auto size = sizeof...(ARGS);
    OperatorRegistrarRecursive<I + 1, I + 1 == size, ARGS...> reg(op_type,
                                                                  info);
    (void)(reg);
  }
};

template <size_t I, typename... ARGS>
class OperatorRegistrarRecursive<I, true, ARGS...> {
 public:
  OperatorRegistrarRecursive(const char* op_type, OpInfo* info) {}
};

template <typename T>
struct OpInfoFiller<T, kOperator> {
  void operator()(const char* op_type, OpInfo* info) const {
Z
Zeng Jinle 已提交
160 161 162
    PADDLE_ENFORCE_EQ(info->creator_, nullptr,
                      platform::errors::AlreadyExists(
                          "OpCreator of %s has been registered", op_type));
163 164 165 166 167
    info->creator_ = [](const std::string& type, const VariableNameMap& inputs,
                        const VariableNameMap& outputs,
                        const AttributeMap& attrs) {
      return new T(type, inputs, outputs, attrs);
    };
Z
Zeng Jinle 已提交
168 169 170 171 172 173 174

    if (std::is_base_of<OperatorWithKernel, T>::value) {
      PADDLE_ENFORCE_EQ(
          info->infer_shape_, nullptr,
          platform::errors::AlreadyExists(
              "Duplicate InferShapeFN of %s has been registered", op_type));

175 176
      OperatorWithKernel* op = dynamic_cast<OperatorWithKernel*>(info->creator_(
          std::string{}, VariableNameMap{}, VariableNameMap{}, AttributeMap{}));
Z
Zeng Jinle 已提交
177 178 179 180 181 182
      PADDLE_ENFORCE_NOT_NULL(op, platform::errors::InvalidArgument(
                                      "%s should have kernels", op_type));
      info->infer_shape_ = [op](InferShapeContext* ctx) {
        op->InferShape(ctx);
      };
    }
183 184 185 186 187 188
  }
};

template <typename T>
struct OpInfoFiller<T, kOpProtoAndCheckerMaker> {
  void operator()(const char* op_type, OpInfo* info) const {
Z
Zeng Jinle 已提交
189 190
    PADDLE_ENFORCE_EQ(info->proto_, nullptr,
                      platform::errors::AlreadyExists(
191
                          "OpProto of %s has been registered.", op_type));
Z
Zeng Jinle 已提交
192 193
    PADDLE_ENFORCE_EQ(info->checker_, nullptr,
                      platform::errors::AlreadyExists(
194
                          "OpAttrChecker of %s has been registered.", op_type));
195
    info->proto_ = new proto::OpProto;
196
    info->checker_ = new OpAttrChecker();
Y
Yu Yang 已提交
197
    T maker;
Y
yuyang18 已提交
198
    maker(info->proto_, info->checker_);
199
    info->proto_->set_type(op_type);
200 201 202 203 204
    PADDLE_ENFORCE_EQ(
        info->proto_->IsInitialized(), true,
        platform::errors::PreconditionNotMet(
            "Fail to initialize %s's OpProto, because %s is not initialized.",
            op_type, info->proto_->InitializationErrorString()));
205 206 207 208 209 210
  }
};

template <typename T>
struct OpInfoFiller<T, kGradOpDescMaker> {
  void operator()(const char* op_type, OpInfo* info) const {
Z
Zeng Jinle 已提交
211 212 213 214 215
    PADDLE_ENFORCE_EQ(
        info->grad_op_maker_, nullptr,
        platform::errors::AlreadyExists(
            "GradOpDescMaker of %s has been registered", op_type));

216
    info->grad_op_maker_ = [](
Y
Yu Yang 已提交
217
        const OpDesc& fwd_op,
218
        const std::unordered_set<std::string>& no_grad_set,
Y
Yu Yang 已提交
219
        std::unordered_map<std::string, std::string>* grad_to_var,
Y
Yu Yang 已提交
220
        const std::vector<BlockDesc*>& grad_block) {
Y
Yu Yang 已提交
221
      T maker(fwd_op, no_grad_set, grad_to_var, grad_block);
222 223
      return maker();
    };
S
sneaxiy 已提交
224 225

    info->use_default_grad_op_desc_maker_ =
H
hong 已提交
226
        std::is_base_of<DefaultGradOpMaker<OpDesc, true>, T>::value ||
227 228 229 230 231 232 233 234 235
        std::is_base_of<DefaultGradOpMaker<OpDesc, false>, T>::value ||
        std::is_base_of<DefaultGradOpMaker<imperative::OpBase, true>,
                        T>::value ||
        std::is_base_of<DefaultGradOpMaker<imperative::OpBase, false>,
                        T>::value;

    info->use_empty_grad_op_desc_maker_ =
        std::is_base_of<EmptyGradOpMaker<OpDesc>, T>::value ||
        std::is_base_of<EmptyGradOpMaker<imperative::OpBase>, T>::value;
H
hong 已提交
236 237 238 239 240 241
  }
};

template <typename T>
struct OpInfoFiller<T, kGradOpBaseMaker> {
  void operator()(const char* op_type, OpInfo* info) const {
Z
Zeng Jinle 已提交
242 243 244 245 246
    PADDLE_ENFORCE_EQ(
        info->dygraph_grad_op_maker_, nullptr,
        platform::errors::AlreadyExists(
            "GradOpBaseMaker of %s has been registered", op_type));

H
hong 已提交
247
    info->dygraph_grad_op_maker_ = [](
248
        const std::string& type,
H
hong 已提交
249
        const imperative::NameVarBaseMap& var_base_map_in,
250
        const imperative::NameVarBaseMap& var_base_map_out,
251
        const framework::AttributeMap& attrs,
252
        const framework::AttributeMap& default_attrs,
253 254
        const std::map<std::string, std::string>& inplace_map) {
      T maker(type, var_base_map_in, var_base_map_out, attrs, inplace_map);
255
      maker.SetDygraphDefaultAttrsMap(default_attrs);
H
hong 已提交
256 257
      return maker();
    };
258 259
  }
};
Y
Yu Yang 已提交
260 261 262 263

template <typename T>
struct OpInfoFiller<T, kVarTypeInference> {
  void operator()(const char* op_type, OpInfo* info) const {
Z
Zeng Jinle 已提交
264 265 266 267
    PADDLE_ENFORCE_EQ(
        info->infer_var_type_, nullptr,
        platform::errors::AlreadyExists(
            "VarTypeInference of %s has been registered", op_type));
M
minqiyang 已提交
268
    info->infer_var_type_ = [](InferVarTypeContext* context) {
Y
Yu Yang 已提交
269
      T inference;
M
minqiyang 已提交
270
      inference(context);
Y
Yu Yang 已提交
271 272 273 274
    };
  }
};

275 276 277
template <typename T>
struct OpInfoFiller<T, kShapeInference> {
  void operator()(const char* op_type, OpInfo* info) const {
Z
Zeng Jinle 已提交
278 279 280 281
    PADDLE_ENFORCE_EQ(
        info->infer_shape_, nullptr,
        platform::errors::AlreadyExists(
            "Duplicate InferShapeFN of %s has been registered", op_type));
282 283 284 285 286 287 288
    info->infer_shape_ = [](InferShapeContext* ctx) {
      T inference;
      inference(ctx);
    };
  }
};

D
dzhwinter 已提交
289 290 291
template <typename T>
struct OpInfoFiller<T, kInplaceOpInference> {
  void operator()(const char* op_type, OpInfo* info) const {
Z
Zeng Jinle 已提交
292 293 294 295
    PADDLE_ENFORCE_EQ(
        info->infer_inplace_, nullptr,
        platform::errors::AlreadyExists(
            "InplaceOpInference of %s has been registered", op_type));
296
    info->infer_inplace_ = [](bool use_cuda) {
D
dzhwinter 已提交
297
      T infer;
298
      return infer(use_cuda);
D
dzhwinter 已提交
299 300 301 302
    };
  }
};

S
sneaxiy 已提交
303 304 305
template <typename T>
struct OpInfoFiller<T, kNoNeedBufferVarsInference> {
  void operator()(const char* op_type, OpInfo* info) const {
Z
Zeng Jinle 已提交
306 307 308 309
    PADDLE_ENFORCE_EQ(
        info->infer_no_need_buffer_vars_, nullptr,
        platform::errors::AlreadyExists(
            "NoNeedBufferVarsInference of %s has been registered", op_type));
310
    info->infer_no_need_buffer_vars_.Reset(std::make_shared<T>());
S
sneaxiy 已提交
311 312 313
  }
};

314 315 316 317 318 319
// A fake OpInfoFiller of void
template <>
struct OpInfoFiller<void, kUnknown> {
  void operator()(const char* op_type, OpInfo* info) const {}
};

320 321 322 323
}  // namespace details

}  // namespace framework
}  // namespace paddle