elementwise_op.cc 13.7 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
N
nhzlx 已提交
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22 23 24 25 26 27 28 29 30 31 32 33 34
static bool CheckDims(const nvinfer1::Dims& dims_x,
                      const nvinfer1::Dims& dims_y) {
  if (dims_x.nbDims != dims_y.nbDims) {
    return false;
  }
  for (int i = 0; i < dims_x.nbDims; i++) {
    if (dims_x.d[i] != dims_y.d[i]) {
      return false;
    }
  }
  return true;
}

N
nhzlx 已提交
35 36 37 38 39 40 41
class ElementwiseWeightOpConverter : public OpConverter {
 public:
  ElementwiseWeightOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
42
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
43
    framework::OpDesc op_desc(op, nullptr);
44
    VLOG(3) << "Convert a fluid elementwise op to TensorRT IScaleLayer";
N
nhzlx 已提交
45 46 47

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
S
Shang Zhizhou 已提交
48 49 50
    PADDLE_ENFORCE_NOT_NULL(
        Y_v, platform::errors::NotFound("Variable %s not found in scope.",
                                        op_desc.Input("Y").front().c_str()));
N
nhzlx 已提交
51
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
52
    float* weight_data = nullptr;
53
    auto output_name = op_desc.Output("Out")[0];
54
    weight_data = engine_->GetWeightCPUData(op_desc.Input("Y").front(), Y_t);
55
    nvinfer1::Dims dims_x = X->getDimensions();
S
shentanyue 已提交
56
    std::vector<int> dims_y = phi::vectorize<int>(Y_t->dims());
57 58

    auto regist_eltwise_weight = [&](nvinfer1::ScaleMode scale_mode) {
59 60 61 62
      nvinfer1::IShuffleLayer* expand_layer = nullptr;
      nvinfer1::IShuffleLayer* squeeze_layer = nullptr;
      int dynamic_shape_offset = engine_->with_dynamic_shape() ? 1 : 0;
      auto input_dim = X->getDimensions();
S
shentanyue 已提交
63
      // reshape
64 65 66 67 68 69 70 71 72 73 74 75 76
      if (input_dim.nbDims < 3 + dynamic_shape_offset) {
        nvinfer1::Dims expand_shape;
        expand_shape.nbDims = 3 + dynamic_shape_offset;
        for (int i = 0; i < expand_shape.nbDims; i++) {
          if (i < input_dim.nbDims) {
            expand_shape.d[i] = input_dim.d[i] < 0 ? 0 : input_dim.d[i];
          } else {
            expand_shape.d[i] = 1;
          }
        }
        expand_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
        expand_layer->setReshapeDimensions(expand_shape);
        X = expand_layer->getOutput(0);
77 78 79 80
        expand_layer->getOutput(0)->setName(
            ("elementwise_reshape_out: " + output_name).c_str());
        expand_layer->setName(
            ("Elewise: Shuffle: (Output: " + output_name + ")").c_str());
81
      }
S
shentanyue 已提交
82 83 84 85 86 87 88
      // eltwise_ops
      TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
      TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
      TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
89
      if (op_type_ == "add") {
S
shentanyue 已提交
90 91 92 93 94 95 96 97 98 99
        shift_weights = TensorRTEngine::Weight(
            nvinfer1::DataType::kFLOAT, static_cast<void*>(weight_data),
            static_cast<size_t>(Y_t->numel()));
      } else if (op_type_ == "sub") {
        for (int i = 0; i < Y_t->numel(); i++) {
          weight_data[i] = -weight_data[i];
        }
        shift_weights = TensorRTEngine::Weight(
            nvinfer1::DataType::kFLOAT, static_cast<void*>(weight_data),
            static_cast<size_t>(Y_t->numel()));
100
      } else if (op_type_ == "mul") {
S
shentanyue 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114
        scale_weights = TensorRTEngine::Weight(
            nvinfer1::DataType::kFLOAT, static_cast<void*>(weight_data),
            static_cast<size_t>(Y_t->numel()));
      } else if (op_type_ == "div") {
        for (int i = 0; i < Y_t->numel(); i++) {
          weight_data[i] = 1.f / weight_data[i];
        }
        scale_weights = TensorRTEngine::Weight(
            nvinfer1::DataType::kFLOAT, static_cast<void*>(weight_data),
            static_cast<size_t>(Y_t->numel()));
      } else if (op_type_ == "pow") {
        power_weights = TensorRTEngine::Weight(
            nvinfer1::DataType::kFLOAT, static_cast<void*>(weight_data),
            static_cast<size_t>(Y_t->numel()));
115
      }
S
shentanyue 已提交
116 117 118 119 120
      nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
          engine_, ScaleNd, *X, scale_mode, shift_weights.get(),
          scale_weights.get(), power_weights.get(), dynamic_shape_offset);
      layer = scale_layer;
      // reshape
121 122 123 124 125 126 127 128 129
      if (input_dim.nbDims < 3 + dynamic_shape_offset) {
        nvinfer1::Dims squeeze_shape;
        squeeze_shape.nbDims = input_dim.nbDims;
        for (int i = 0; i < squeeze_shape.nbDims; i++) {
          squeeze_shape.d[i] = input_dim.d[i] < 0 ? 0 : input_dim.d[i];
        }
        squeeze_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *(layer->getOutput(0)));
        squeeze_layer->setReshapeDimensions(squeeze_shape);
130 131 132 133 134
        RreplenishLayerAndOutput(squeeze_layer, "elementwise_" + op_type_,
                                 {output_name}, test_mode);
      } else {
        RreplenishLayerAndOutput(layer, "elementwise_" + op_type_,
                                 {output_name}, test_mode);
135
      }
136 137
    };

S
shentanyue 已提交
138
    // dynamic shape
139
    if (engine_->with_dynamic_shape()) {
S
shentanyue 已提交
140 141 142 143 144 145
      if (dims_y.size() == 1 && dims_y[0] == dims_x.d[1]) {
        regist_eltwise_weight(nvinfer1::ScaleMode::kCHANNEL);
      } else if (dims_y.size() == 1 && dims_y[0] == 1) {
        regist_eltwise_weight(nvinfer1::ScaleMode::kUNIFORM);
      } else if (dims_y.size() == static_cast<size_t>(dims_x.nbDims)) {
        regist_eltwise_weight(nvinfer1::ScaleMode::kELEMENTWISE);
146 147
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
S
shentanyue 已提交
148 149 150 151
            "The size of input_y's dims is %d, but TensorRT dynamic shape "
            "only support size = 1 or size = input_x.size() for Elementwise "
            "op!",
            dims_y.size()));
152 153 154 155
      }
      return;
    }

S
shentanyue 已提交
156
    // static shape with dynamic batch
157 158
    std::vector<int> no_batch_dims;
    int start_index = 0;
S
shentanyue 已提交
159
    for (; start_index < dims_x.nbDims; start_index++) {
160
      no_batch_dims.push_back(dims_x.d[start_index]);
N
nhzlx 已提交
161
    }
162
    if (dims_y.size() == 1 && dims_y[0] == no_batch_dims[0]) {
S
shentanyue 已提交
163 164 165 166 167
      regist_eltwise_weight(nvinfer1::ScaleMode::kCHANNEL);
    } else if (dims_y.size() == 1 && dims_y[0] == 1) {
      regist_eltwise_weight(nvinfer1::ScaleMode::kUNIFORM);
    } else if (dims_y.size() == no_batch_dims.size() + 1) {
      regist_eltwise_weight(nvinfer1::ScaleMode::kELEMENTWISE);
N
nhzlx 已提交
168
    } else {
S
shentanyue 已提交
169 170 171 172 173
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The size of input_y's dims is %d, but TensorRT dynamic shape "
          "only support size = 1 or size = input_x.size() for Elementwise "
          "op!",
          dims_y.size()));
N
nhzlx 已提交
174 175
    }
  }
176 177 178

 protected:
  std::string op_type_;
N
nhzlx 已提交
179 180 181 182 183 184 185
};

class ElementwiseTensorOpConverter : public OpConverter {
 public:
  ElementwiseTensorOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
186
    auto op_pair = ops.find(op_type_);
187 188 189 190 191
    PADDLE_ENFORCE_NE(op_pair, ops.end(),
                      platform::errors::InvalidArgument(
                          "Elementwise op's type(%s) is not supported. Please "
                          "check if the op_type is correct.",
                          op_type_));
192

N
nhzlx 已提交
193 194 195
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
196
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
197 198 199

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
200 201 202
    std::vector<nvinfer1::ITensor*> itensors;
    itensors.push_back(X);
    itensors.push_back(Y);
N
nhzlx 已提交
203 204 205
    nvinfer1::Dims dims_x = X->getDimensions();
    nvinfer1::Dims dims_y = Y->getDimensions();

206
    int axis = BOOST_GET_CONST(int, op_desc.GetAttr("axis"));
207
    auto output_name = op_desc.Output("Out")[0];
208 209 210 211

    auto common_func = [&](nvinfer1::ILayer* layer) {
      RreplenishLayerAndOutput(layer, "elementwise", {output_name}, test_mode);
    };
212
    if (dims_x.nbDims == dims_y.nbDims) {
213 214
      // The two input tensor should have the same dims
      VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
215 216
      nvinfer1::IElementWiseLayer* elet_layer =
          TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *X, *Y, op_pair->second);
N
nhzlx 已提交
217

218
      layer = elet_layer;
219 220 221
    } else {
      VLOG(3) << "Convert a fluid elementwise op to TensorRT "
                 "ElementWisePluginLayer";
222 223 224 225
      if (engine_->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        plugin::ElementwisePluginDynamic* plugin =
            new plugin::ElementwisePluginDynamic(op_type_, axis);
226
        layer = engine_->AddDynamicPlugin(itensors.data(), 2, plugin);
227 228 229 230
#else
        PADDLE_THROW(platform::errors::Fatal(
            "You are running the TRT Dynamic Shape mode, need to confirm that "
            "your TRT version is no less than 6.0"));
231
#endif
232 233 234
      } else {
        plugin::ElementWisePlugin* plugin =
            new plugin::ElementWisePlugin(op_type_, dims_x, dims_y, axis);
235 236 237 238

        std::vector<nvinfer1::ITensor*> inputs{X, Y};
        auto* plugin_layer = engine_->AddPlugin(
            inputs.data(), inputs.size(),
239 240 241
            reinterpret_cast<plugin::PluginTensorRT*>(plugin));
        layer = plugin_layer;
      }
N
nhzlx 已提交
242
    }
243
    common_func(layer);
N
nhzlx 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

263 264 265 266 267 268 269 270 271 272
class ElementwiseWeightAddOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseWeightMulOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightMulOpConverter() { op_type_ = "mul"; }
};

S
shentanyue 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
class ElementwiseWeightSubOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseWeightDivOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseWeightPowOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightPowOpConverter() { op_type_ = "pow"; }
};

N
nhzlx 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

327 328 329 330
REGISTER_TRT_OP_CONVERTER(elementwise_add_weight,
                          ElementwiseWeightAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_weight,
                          ElementwiseWeightMulOpConverter);
S
shentanyue 已提交
331 332 333 334 335 336
REGISTER_TRT_OP_CONVERTER(elementwise_sub_weight,
                          ElementwiseWeightSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_weight,
                          ElementwiseWeightDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_weight,
                          ElementwiseWeightPowOpConverter);
N
nhzlx 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);