test_sequence_conv.py 9.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18 19
import unittest
import numpy as np
import random
20 21
import sys
sys.path.append("../")
22
from op_test import OpTest
C
chengduoZH 已提交
23 24


25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
def seqconv(x,
            lod,
            filter,
            context_length,
            context_start,
            padding_trainable=False,
            padding_data=None):
    [T, M] = x.shape
    col = np.zeros((T, context_length * M)).astype('float32')
    offset = [0]
    for seq_len in lod[0]:
        offset.append(offset[-1] + seq_len)
    begin_pad = np.max([0, -context_start])
    for i in range(len(offset) - 1):
        for j in range(context_length):
            in_begin = offset[i] + context_start + j
            in_end = offset[i + 1] + context_start + j
            out_begin = offset[i]
            out_end = offset[i + 1]
            if in_begin < offset[i]:
                pad_size = np.min(
                    [offset[i] - in_begin, offset[i + 1] - offset[i]])
                if padding_trainable:
                    sub_w = padding_data[j:j + pad_size, :]
                    col[offset[i]:offset[i] + pad_size, j * M:(j + 1) *
                        M] = sub_w
                out_begin = offset[i] + pad_size
                in_begin = offset[i]

            if in_end > offset[i + 1]:
                pad_size = np.min(
                    [in_end - offset[i + 1], offset[i + 1] - offset[i]])
                if padding_trainable:
                    sub_w = padding_data[begin_pad + context_start + j -
                                         pad_size:begin_pad + context_start +
                                         j, :]
                    col[offset[i + 1] - pad_size:offset[i + 1], j * M:(j + 1) *
                        M] = sub_w
                in_end = offset[i + 1]
                out_end = offset[i + 1] - pad_size
            if in_end <= in_begin:
                continue
            in_sub = x[in_begin:in_end, :]
            col[out_begin:out_end, j * M:(j + 1) * M] += in_sub
    return np.dot(col, filter)


C
chengduoZH 已提交
72 73 74 75 76 77 78 79
class TestSeqProject(OpTest):
    def setUp(self):
        self.init_test_case()
        self.op_type = 'sequence_conv'

        if self.context_length == 1 \
                and self.context_start == 0 \
                and self.padding_trainable:
80
            print("If context_start is 0 " \
C
chengduoZH 已提交
81
                  "and context_length is 1," \
82
                  " padding_trainable should be false.")
C
chengduoZH 已提交
83 84 85 86 87
            return

        # one level, batch size
        x = np.random.uniform(0.1, 1, [self.input_size[0],
                                       self.input_size[1]]).astype('float32')
C
chengduoZH 已提交
88 89 90
        w = np.random.uniform(0.1, 1, [
            self.context_length * self.input_size[1], self.output_represention
        ]).astype('float32')
C
chengduoZH 已提交
91 92 93 94 95 96 97

        begin_pad = np.max([0, -self.context_start])
        end_pad = np.max([0, self.context_start + self.context_length - 1])
        total_pad = begin_pad + end_pad
        padding_data = np.random.uniform(
            0.1, 1, [total_pad, self.input_size[1]]).astype('float32')
        self.pad_data = padding_data
C
chengduoZH 已提交
98 99
        self.inputs = {
            'X': (x, self.lod),
C
chengduoZH 已提交
100
            'Filter': w,
C
chengduoZH 已提交
101
        }
C
chengduoZH 已提交
102 103 104 105 106 107 108 109 110 111
        self.inputs_val = ['X', 'Filter']
        self.inputs_val_no_x = ['Filter']
        self.inputs_val_no_f = ['X']

        if total_pad != 0:
            self.inputs['PaddingData'] = padding_data
            self.inputs_val = ['X', 'PaddingData', 'Filter']
            self.inputs_val_no_x = ['PaddingData', 'Filter']
            self.inputs_val_no_f = ['PaddingData', 'X']

C
chengduoZH 已提交
112
        self.attrs = {
C
chengduoZH 已提交
113 114 115 116
            'contextStart': self.context_start,
            'contextLength': self.context_length,
            'paddingTrainable': self.padding_trainable,
            'contextStride': self.context_stride
C
chengduoZH 已提交
117
        }
118 119
        out = seqconv(x, self.lod, w, self.context_length, self.context_start,
                      self.padding_trainable, self.pad_data)
C
chengduoZH 已提交
120 121 122 123 124 125 126 127
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
128
                set(self.inputs_val), 'Out', max_relative_error=0.05)
C
chengduoZH 已提交
129 130 131 132 133 134

    def test_check_grad_input(self):
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.05,
C
chengduoZH 已提交
135
            no_grad_set=set(self.inputs_val_no_x))
C
chengduoZH 已提交
136 137 138 139

    def test_check_grad_padding_data(self):
        if self.padding_trainable:
            self.check_grad(
140
                ['PaddingData'], 'Out', no_grad_set=set(['X', 'Filter']))
C
chengduoZH 已提交
141 142 143 144 145 146

    def test_check_grad_Filter(self):
        self.check_grad(
            ['Filter'],
            'Out',
            max_relative_error=0.05,
C
chengduoZH 已提交
147
            no_grad_set=set(self.inputs_val_no_f))
C
chengduoZH 已提交
148

C
chengduoZH 已提交
149
    def test_check_grad_input_filter(self):
C
chengduoZH 已提交
150 151 152 153 154 155
        if self.padding_trainable:
            self.check_grad(
                ['X', 'Filter'],
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['PaddingData']))
C
chengduoZH 已提交
156 157 158 159

    def test_check_grad_padding_input(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
160
                self.inputs_val_no_f,
C
chengduoZH 已提交
161 162 163 164 165 166 167
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['Filter']))

    def test_check_grad_padding_filter(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
168
                self.inputs_val_no_x,
C
chengduoZH 已提交
169 170 171 172
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['X']))

C
chengduoZH 已提交
173 174 175 176 177 178 179 180
    def init_test_case(self):
        self.input_row = 11
        self.context_start = 0
        self.context_length = 1
        self.padding_trainable = False
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
181 182 183 184 185
        offset_lod = [[0, 4, 5, 8, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
186
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
187 188 189 190 191 192 193 194 195 196


class TestSeqProjectCase1(TestSeqProject):
    def init_test_case(self):
        self.input_row = 11
        self.context_start = -1
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

Z
zhupengyang 已提交
197
        self.input_size = [self.input_row, 50]
198 199 200 201 202
        offset_lod = [[0, 4, 5, 8, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
203
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
204 205


206 207 208 209 210 211 212 213
class TestSeqProjectCase2Len0(TestSeqProject):
    def init_test_case(self):
        self.input_row = 11
        self.context_start = -1
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

Z
zhupengyang 已提交
214
        self.input_size = [self.input_row, 50]
215 216 217 218 219 220 221 222 223
        offset_lod = [[0, 0, 4, 5, 5, 8, self.input_row, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
        self.output_represention = 8  # output feature size


class TestSeqProjectCase3(TestSeqProject):
C
chengduoZH 已提交
224 225 226 227 228 229 230
    def init_test_case(self):
        self.input_row = 25
        self.context_start = 2
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

Z
zhupengyang 已提交
231
        self.input_size = [self.input_row, 25]
232
        idx = list(range(self.input_size[0]))
C
chengduoZH 已提交
233
        del idx[0]
234 235 236 237 238 239
        offset_lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
                      [self.input_size[0]]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
240
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
241 242


243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
class TestSeqConvApi(unittest.TestCase):
    def test_api(self):
        import paddle.fluid as fluid

        x = fluid.layers.data('x', shape=[32], lod_level=1)
        y = fluid.layers.sequence_conv(
            input=x, num_filters=2, filter_size=3, padding_start=None)

        place = fluid.CPUPlace()
        x_tensor = fluid.create_lod_tensor(
            np.random.rand(10, 32).astype("float32"), [[2, 3, 1, 4]], place)
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        ret = exe.run(feed={'x': x_tensor}, fetch_list=[y], return_numpy=False)


C
chengduoZH 已提交
259 260
if __name__ == '__main__':
    unittest.main()