profiler_statistic.py 57.5 KB
Newer Older
C
chenjian 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenjian 已提交
2
#
C
chenjian 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
C
chenjian 已提交
6
#
C
chenjian 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chenjian 已提交
8
#
C
chenjian 已提交
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from enum import Enum

from paddle.fluid.core import TracerEventType

C
chenjian 已提交
19 20 21 22 23 24 25 26 27 28 29 30
from .statistic_helper import *

_AllTracerEventType = [
    TracerEventType.Operator, TracerEventType.Dataloader,
    TracerEventType.ProfileStep, TracerEventType.CudaRuntime,
    TracerEventType.Kernel, TracerEventType.Memcpy, TracerEventType.Memset,
    TracerEventType.UserDefined, TracerEventType.OperatorInner,
    TracerEventType.Forward, TracerEventType.Backward,
    TracerEventType.Optimization, TracerEventType.Communication,
    TracerEventType.PythonOp, TracerEventType.PythonUserDefined
]

C
chenjian 已提交
31
_CommunicationOpName = ['allreduce', 'broadcast', 'rpc']
C
chenjian 已提交
32

C
chenjian 已提交
33 34 35

class SortedKeys(Enum):
    r"""
C
chenjian 已提交
36
    SortedKeys is used to specify how to sort items when printing :ref:`summary <api_paddle_profiler_profiler_summary>` table.
C
chenjian 已提交
37

C
chenjian 已提交
38
    The meaning of each SortedKeys is as following
C
chenjian 已提交
39

C
chenjian 已提交
40
    - **SortedKeys.CPUTotal** :  Sorted by CPU total time.
C
chenjian 已提交
41

C
chenjian 已提交
42
    - **SortedKeys.CPUAvg**  : Sorted by CPU average time.
C
chenjian 已提交
43

C
chenjian 已提交
44
    - **SortedKeys.CPUMax**  : Sorted by CPU max time.
C
chenjian 已提交
45

C
chenjian 已提交
46
    - **SortedKeys.CPUMin**  : Sorted by CPU min time.
C
chenjian 已提交
47

C
chenjian 已提交
48
    - **SortedKeys.GPUTotal**  : Sorted by GPU total time.
C
chenjian 已提交
49

C
chenjian 已提交
50
    - **SortedKeys.GPUAvg**  : Sorted by GPU average time.
C
chenjian 已提交
51

C
chenjian 已提交
52 53 54
    - **SortedKeys.GPUMax**  : Sorted by GPU max time.

    - **SortedKeys.GPUMin**  : Sorted by GPU min time.
C
chenjian 已提交
55 56 57 58 59 60 61 62 63
    """
    CPUTotal = 0
    CPUAvg = 1
    CPUMax = 2
    CPUMin = 3
    GPUTotal = 4
    GPUAvg = 5
    GPUMax = 6
    GPUMin = 7
C
chenjian 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76


class HostStatisticNode:
    r'''
    Wrap original node for calculating statistic metrics.
    '''

    def __init__(self, hostnode):
        self.hostnode = hostnode
        self.children_node = []
        self.runtime_node = []
        self.cpu_time = 0
        self.self_cpu_time = 0
C
chenjian 已提交
77
        self.gpu_time = 0  # kernel time
C
chenjian 已提交
78
        self.self_gpu_time = 0
C
chenjian 已提交
79 80
        self.general_gpu_time = 0  # besides kernel, include time of gpu events like memcpy and memset
        self.self_general_gpu_time = 0
C
chenjian 已提交
81 82 83 84 85 86 87 88 89 90

    def cal_statistic(self):
        for child in self.children_node:
            child.cal_statistic()
        for rt in self.runtime_node:
            rt.cal_statistic()

        self.cpu_time = self.hostnode.end_ns - self.hostnode.start_ns
        for child in self.children_node:
            self.gpu_time += child.gpu_time
C
chenjian 已提交
91
            self.general_gpu_time += child.general_gpu_time
C
chenjian 已提交
92 93 94 95 96
            self.self_cpu_time -= (child.end_ns - child.start_ns)
        for rt in self.runtime_node:
            self.self_cpu_time -= (rt.end_ns - rt.start_ns)
            self.gpu_time += rt.gpu_time
            self.self_gpu_time += rt.gpu_time
C
chenjian 已提交
97 98
            self.general_gpu_time += rt.general_gpu_time
            self.self_general_gpu_time += rt.general_gpu_time
C
chenjian 已提交
99
        for device in self.hostnode.device_node:
C
chenjian 已提交
100 101 102 103 104
            if device.type == TracerEventType.Kernel:
                self.gpu_time += (device.end_ns - device.start_ns)
                self.self_gpu_time += (device.end_ns - device.start_ns)
            self.general_gpu_time += (device.end_ns - device.start_ns)
            self.self_general_gpu_time += (device.end_ns - device.start_ns)
C
chenjian 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    @property
    def end_ns(self):
        return self.hostnode.end_ns

    @property
    def start_ns(self):
        return self.hostnode.start_ns

    def __getattr__(self, name):
        return getattr(self.hostnode, name)


def traverse_tree(nodetrees):
    results = collections.defaultdict(list)
    for thread_id, rootnode in nodetrees.items():
        stack = []
        stack.append(rootnode)
        threadlist = results[thread_id]
        while stack:
            current_node = stack.pop()
            threadlist.append(current_node)
            for childnode in current_node.children_node:
                stack.append(childnode)
    return results


C
chenjian 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
def get_device_nodes(hostnode):
    '''
    Get all device nodes called in the time range of hostnode.
    '''
    stack = []
    device_nodes = []
    stack.append(hostnode)
    while stack:
        current_node = stack.pop()
        for childnode in current_node.children_node:
            stack.append(childnode)
        for runtimenode in current_node.runtime_node:
            for devicenode in runtimenode.device_node:
                device_nodes.append(devicenode)
    return device_nodes


C
chenjian 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
def wrap_tree(nodetrees):
    '''
    Using HostStatisticNode to wrap original profiler result tree, and calculate node statistic metrics.
    '''
    node_statistic_tree = {}
    results = collections.defaultdict(list)
    newresults = collections.defaultdict(list)
    for thread_id, rootnode in nodetrees.items():
        stack = []
        stack.append(rootnode)
        root_statistic_node = HostStatisticNode(rootnode)
        newstack = []
        newstack.append(root_statistic_node)
        node_statistic_tree[thread_id] = root_statistic_node
        threadlist = results[thread_id]
        newthreadlist = newresults[thread_id]
        while stack:
            current_node = stack.pop()
            threadlist.append(current_node)
            current_statistic_node = newstack.pop()
            newthreadlist.append(current_statistic_node)
            for childnode in current_node.children_node:
                stack.append(childnode)
                child_statistic_node = HostStatisticNode(childnode)
                current_statistic_node.children_node.append(
                    child_statistic_node)
                newstack.append(child_statistic_node)
            for runtimenode in current_node.runtime_node:
                runtime_statistic_node = HostStatisticNode(runtimenode)
                current_statistic_node.runtime_node.append(
                    runtime_statistic_node)
    # recursive calculate node statistic values
    for thread_id, root_statistic_node in node_statistic_tree.items():
        root_statistic_node.cal_statistic()

    return node_statistic_tree, newresults


class TimeRangeSummary:
    r"""
    Analyse time ranges for each TracerEventType, and summarize the time.
    """

    def __init__(self):
        self.CPUTimeRange = collections.defaultdict(list)
        self.GPUTimeRange = collections.defaultdict(
            lambda: collections.defaultdict(list)
        )  # GPU events should be divided into different devices
        self.CPUTimeRangeSum = collections.defaultdict(int)
        self.GPUTimeRangeSum = collections.defaultdict(
            lambda: collections.defaultdict(int))
        self.call_times = collections.defaultdict(int)

    def parse(self, nodetrees):
        r"""
        Analysis node trees in profiler result, and get time range for different tracer event type.
        """
        thread2hostnodes = traverse_tree(nodetrees)
        for threadid, hostnodes in thread2hostnodes.items():
            CPUTimeRange = collections.defaultdict(list)
            GPUTimeRange = collections.defaultdict(
                lambda: collections.defaultdict(lambda: collections.defaultdict(list))
            )  # device_id/type/stream_id
            for hostnode in hostnodes[1:]:  #skip root node
                CPUTimeRange[hostnode.type].append(
                    (hostnode.start_ns, hostnode.end_ns))
                self.call_times[hostnode.type] += 1
                for runtimenode in hostnode.runtime_node:
                    CPUTimeRange[runtimenode.type].append(
                        (runtimenode.start_ns, runtimenode.end_ns))
                    self.call_times[runtimenode.type] += 1
                    for devicenode in runtimenode.device_node:
                        GPUTimeRange[devicenode.device_id][devicenode.type][
                            devicenode.stream_id].append(
                                (devicenode.start_ns, devicenode.end_ns))
                        self.call_times[devicenode.type] += 1

            for event_type, time_ranges in CPUTimeRange.items():
                time_ranges = merge_self_ranges(time_ranges, is_sorted=False)
                self.CPUTimeRange[event_type] = merge_ranges(
                    self.CPUTimeRange[event_type], time_ranges, is_sorted=True)
            for device_id, device_time_ranges in GPUTimeRange.items():
                for event_type, event_time_ranges in device_time_ranges.items():
                    for stream_id, time_ranges in event_time_ranges.items():
                        time_ranges = merge_self_ranges(
                            time_ranges, is_sorted=False)
                        self.GPUTimeRange[device_id][event_type] = merge_ranges(
                            self.GPUTimeRange[device_id][event_type],
                            time_ranges,
                            is_sorted=True)

        for event_type, time_ranges in self.CPUTimeRange.items():
            self.CPUTimeRangeSum[event_type] = sum_ranges(time_ranges)
        for device_id, device_time_ranges in self.GPUTimeRange.items():
            for event_type, time_ranges in device_time_ranges.items():
                self.GPUTimeRangeSum[device_id][event_type] = sum_ranges(
                    time_ranges)

    def get_gpu_devices(self):
        return self.GPUTimeRange.keys()

    def get_gpu_range_sum(self, device_id, event_type):
        return self.GPUTimeRangeSum[device_id][event_type]

    def get_cpu_range_sum(self, event_type):
        return self.CPUTimeRangeSum[event_type]


C
chenjian 已提交
257 258 259 260 261 262 263 264 265 266 267 268
class DistributedSummary:
    r"""
    Analysis communication and computation time range, and their overlap.
    The computation time is all kernel except kernels for communication like nccl.
    """

    def __init__(self):
        self.cpu_communication_range = []
        self.gpu_communication_range = []
        self.communication_range = []
        self.computation_range = []
        self.overlap_range = []
C
chenjian 已提交
269 270
        self.cpu_calls = 0
        self.gpu_calls = 0
C
chenjian 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

    def parse(self, nodetrees):
        '''
        Collect all communication and computation time ranges.
        '''
        thread2hostnodes = traverse_tree(nodetrees)
        for threadid, hostnodes in thread2hostnodes.items():
            for hostnode in hostnodes[1:]:  #skip root node
                # case 1: TracerEventType is Communication
                if hostnode.type == TracerEventType.Communication:
                    self.cpu_communication_range.append(
                        (hostnode.start_ns, hostnode.end_ns))
                    device_nodes = get_device_nodes(hostnode)
                    for device_node in device_nodes:
                        if device_node.type == TracerEventType.Kernel:
                            self.gpu_communication_range.append(
                                (device_node.start_ns, device_node.end_ns))

                #case 2: TracerEventType is Operator but is communication op
                elif hostnode.type == TracerEventType.Operator and any([
                        name in hostnode.name.lower()
                        for name in _CommunicationOpName
                ]):
                    self.cpu_communication_range.append(
                        (hostnode.start_ns, hostnode.end_ns))
                    device_nodes = get_device_nodes(hostnode)
                    for device_node in device_nodes:
                        if device_node.type == TracerEventType.Kernel:
                            self.gpu_communication_range.append(
                                (device_node.start_ns, device_node.end_ns))

                #case 3: Others, filter kernels named with nccl
                else:
                    for runtimenode in hostnode.runtime_node:
                        for devicenode in runtimenode.device_node:
                            if devicenode.type == TracerEventType.Kernel:
                                if 'nccl' in devicenode.name.lower():
                                    self.gpu_communication_range.append((
                                        devicenode.start_ns, devicenode.end_ns))
                                else:
                                    self.computation_range.append((
                                        devicenode.start_ns, devicenode.end_ns))
C
chenjian 已提交
313 314
        self.cpu_calls = len(set(self.cpu_communication_range))
        self.gpu_calls = len(set(self.gpu_communication_range))
C
chenjian 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328
        self.cpu_communication_range = merge_self_ranges(
            self.cpu_communication_range, is_sorted=False)
        self.gpu_communication_range = merge_self_ranges(
            self.gpu_communication_range, is_sorted=False)
        self.communication_range = merge_ranges(
            self.cpu_communication_range,
            self.gpu_communication_range,
            is_sorted=True)
        self.computation_range = merge_self_ranges(
            self.computation_range, is_sorted=False)
        self.overlap_range = intersection_ranges(
            self.communication_range, self.computation_range, is_sorted=True)


C
chenjian 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
class EventSummary:
    r"""
    Analyse operator event in profiling data, correlate with its device event.
    """

    class DeviceItem:
        def __init__(self, name):
            self.name = name
            self.call = 0
            self.gpu_time = 0
            self.max_gpu_time = 0
            self.min_gpu_time = float('inf')

        @property
        def avg_gpu_time(self):
            return self.gpu_time / self.call

        def add_gpu_time(self, time):
            if time > self.max_gpu_time:
                self.max_gpu_time = time
            if time < self.min_gpu_time:
                self.min_gpu_time = time
            self.gpu_time += time

        def add_item(self, node):
            self.call += 1
            self.add_gpu_time(node.end_ns - node.start_ns)

    class OperatorItem:
        def __init__(self, name):
            self.name = name
            self.call = 0
            self.cpu_time = 0
            self.gpu_time = 0
            self.max_cpu_time = 0
            self.min_cpu_time = float('inf')
            self.max_gpu_time = 0
            self.min_gpu_time = float('inf')
            self.devices = {}
            self.operator_inners = {}
C
chenjian 已提交
369 370 371
            self.general_gpu_time = 0
            self.min_general_gpu_time = float('inf')
            self.max_general_gpu_time = 0
C
chenjian 已提交
372 373 374 375 376 377 378 379 380

        @property
        def avg_cpu_time(self):
            return self.cpu_time / self.call

        @property
        def avg_gpu_time(self):
            return self.gpu_time / self.call

C
chenjian 已提交
381 382 383 384
        @property
        def avg_general_gpu_time(self):
            return self.general_gpu_time / self.call

C
chenjian 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398
        def add_cpu_time(self, time):
            if time > self.max_cpu_time:
                self.max_cpu_time = time
            if time < self.min_cpu_time:
                self.min_cpu_time = time
            self.cpu_time += time

        def add_gpu_time(self, time):
            if time > self.max_gpu_time:
                self.max_gpu_time = time
            if time < self.min_gpu_time:
                self.min_gpu_time = time
            self.gpu_time += time

C
chenjian 已提交
399 400 401 402 403 404 405
        def add_general_gpu_time(self, time):
            if time > self.max_general_gpu_time:
                self.max_general_gpu_time = time
            if time < self.min_general_gpu_time:
                self.min_general_gpu_time = time
            self.general_gpu_time += time

C
chenjian 已提交
406 407 408 409 410 411 412
        def add_call(self):
            self.call += 1

        def add_item(self, node):
            self.add_call()
            self.add_cpu_time(node.cpu_time)
            self.add_gpu_time(node.gpu_time)
C
chenjian 已提交
413
            self.add_general_gpu_time(node.general_gpu_time)
C
chenjian 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
            for child in node.children_node:
                if child.name not in self.operator_inners:
                    self.operator_inners[
                        child.name] = EventSummary.OperatorItem(child.name)
                self.operator_inners[child.name].add_item(child)

            for runtimenode in node.runtime_node:
                for devicenode in runtimenode.device_node:
                    if devicenode.name not in self.devices:
                        self.devices[devicenode.name] = EventSummary.DeviceItem(
                            devicenode.name)
                    self.devices[devicenode.name].add_item(devicenode)

    class GeneralItem:
        def __init__(self, name):
            self.name = name
            self.call = 0
            self.cpu_time = 0
            self.max_cpu_time = 0
            self.min_cpu_time = float('inf')
            self.gpu_time = 0
            self.max_gpu_time = 0
            self.min_gpu_time = float('inf')
C
chenjian 已提交
437 438 439
            self.general_gpu_time = 0
            self.min_general_gpu_time = float('inf')
            self.max_general_gpu_time = 0
C
chenjian 已提交
440 441 442 443 444 445 446 447 448

        @property
        def avg_cpu_time(self):
            return self.cpu_time / self.call

        @property
        def avg_gpu_time(self):
            return self.gpu_time / self.call

C
chenjian 已提交
449 450 451 452
        @property
        def avg_general_gpu_time(self):
            return self.general_gpu_time / self.call

C
chenjian 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466
        def add_cpu_time(self, time):
            if time > self.max_cpu_time:
                self.max_cpu_time = time
            if time < self.min_cpu_time:
                self.min_cpu_time = time
            self.cpu_time += time

        def add_gpu_time(self, time):
            if time > self.max_gpu_time:
                self.max_gpu_time = time
            if time < self.min_gpu_time:
                self.min_gpu_time = time
            self.gpu_time += time

C
chenjian 已提交
467 468 469 470 471 472 473
        def add_general_gpu_time(self, time):
            if time > self.max_general_gpu_time:
                self.max_general_gpu_time = time
            if time < self.min_general_gpu_time:
                self.min_general_gpu_time = time
            self.general_gpu_time += time

C
chenjian 已提交
474 475 476 477 478 479 480
        def add_call(self):
            self.call += 1

        def add_item(self, node):
            self.add_call()
            self.add_cpu_time(node.cpu_time)
            self.add_gpu_time(node.gpu_time)
C
chenjian 已提交
481
            self.add_general_gpu_time(node.general_gpu_time)
C
chenjian 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

    def __init__(self):
        self.items = {}  # for operator summary
        self.thread_items = collections.defaultdict(
            dict)  # for operator summary
        self.userdefined_items = {}  # for userdefined summary
        self.userdefined_thread_items = collections.defaultdict(
            dict)  # for userdefined summary
        self.model_perspective_items = {}  # for model summary
        self.memory_manipulation_items = {}  # for memory manipulation summary

    def parse(self, nodetrees):
        r"""
        Analysis operator event in the nodetress.
        """
        node_statistic_trees, thread2host_statistic_nodes = wrap_tree(nodetrees)
        for threadid, host_statistic_nodes in thread2host_statistic_nodes.items(
        ):
            for host_statistic_node in host_statistic_nodes[
                    1:]:  #skip root node
                if host_statistic_node.type == TracerEventType.Operator:
                    self.add_operator_item(host_statistic_node)
                if host_statistic_node.type == TracerEventType.UserDefined\
                    or host_statistic_node.type == TracerEventType.PythonUserDefined:
                    if 'memcpy' in host_statistic_node.name.lower() or 'memorycopy' in host_statistic_node.name.lower()\
                        or 'memset' in host_statistic_node.name.lower():
                        self.add_memory_manipulation_item(host_statistic_node)
                    else:
                        self.add_userdefined_item(host_statistic_node)

        for threadid, root_statistic_node in node_statistic_trees.items():
            deque = collections.deque()
            deque.append(root_statistic_node)
            while deque:
                current_node = deque.popleft()
                for child in current_node.children_node:
                    if child.type == TracerEventType.Forward or child.type == TracerEventType.Dataloader\
                        or child.type == TracerEventType.Backward or child.type == TracerEventType.Optimization:
                        self.add_model_perspective_item(
                            child)  #find first model perspective node
                    else:
C
chenjian 已提交
523 524
                        if child.type == TracerEventType.ProfileStep:
                            self.add_model_perspective_item(child)
C
chenjian 已提交
525 526 527
                        deque.append(child)

    def add_operator_item(self, operator_node):
C
chenjian 已提交
528 529 530 531 532 533
        have_inner = False
        for child in operator_node.children_node:
            if child.type == TracerEventType.OperatorInner:
                have_inner = True
        if have_inner == False:
            return
C
chenjian 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        if operator_node.name not in self.items:
            self.items[operator_node.name] = EventSummary.OperatorItem(
                operator_node.name)

        self.items[operator_node.name].add_item(operator_node)

        if operator_node.name not in self.thread_items[operator_node.thread_id]:
            self.thread_items[operator_node.thread_id][
                operator_node.name] = EventSummary.OperatorItem(
                    operator_node.name)
        self.thread_items[operator_node.thread_id][operator_node.name].add_item(
            operator_node)

    def add_userdefined_item(self, userdefined_node):
        if userdefined_node.name not in self.userdefined_items:
            self.userdefined_items[
                userdefined_node.name] = EventSummary.GeneralItem(
                    userdefined_node.name)

        self.userdefined_items[userdefined_node.name].add_item(userdefined_node)

        if userdefined_node.name not in self.userdefined_thread_items[
                userdefined_node.thread_id]:
            self.userdefined_thread_items[userdefined_node.thread_id][
                userdefined_node.name] = EventSummary.GeneralItem(
                    userdefined_node.name)
        self.userdefined_thread_items[userdefined_node.thread_id][
            userdefined_node.name].add_item(userdefined_node)

    def add_memory_manipulation_item(self, memory_manipulation_node):
        if memory_manipulation_node.name not in self.memory_manipulation_items:
            self.memory_manipulation_items[
                memory_manipulation_node.name] = EventSummary.GeneralItem(
                    memory_manipulation_node.name)
        self.memory_manipulation_items[memory_manipulation_node.name].add_item(
            memory_manipulation_node)

    def add_model_perspective_item(self, model_perspective_node):
        if model_perspective_node.type == TracerEventType.Forward:
            name = 'Forward'
        elif model_perspective_node.type == TracerEventType.Backward:
            name = 'Backward'
        elif model_perspective_node.type == TracerEventType.Optimization:
            name = 'Optimization'
        elif model_perspective_node.type == TracerEventType.Dataloader:
            name = 'Dataloader'
C
chenjian 已提交
580 581
        elif model_perspective_node.type == TracerEventType.ProfileStep:
            name = 'ProfileStep'
C
chenjian 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        else:
            return
        if name not in self.model_perspective_items:
            self.model_perspective_items[name] = EventSummary.GeneralItem(name)
        self.model_perspective_items[name].add_item(model_perspective_node)


class StatisticData:
    r"""
    Hold all analysed results.
    """

    def __init__(self, node_trees, extra_info):
        self.node_trees = node_trees
        self.extra_info = extra_info
        self.time_range_summary = TimeRangeSummary()
        self.event_summary = EventSummary()
C
chenjian 已提交
599
        self.distributed_summary = DistributedSummary()
C
chenjian 已提交
600 601
        self.time_range_summary.parse(node_trees)
        self.event_summary.parse(node_trees)
C
chenjian 已提交
602
        self.distributed_summary.parse(node_trees)
C
chenjian 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699


def _build_table(statistic_data,
                 sorted_by=SortedKeys.CPUTotal,
                 op_detail=True,
                 thread_sep=False,
                 time_unit='ms',
                 row_limit=100,
                 max_src_column_width=75):
    """Prints a summary of events."""
    # format table row
    SPACING_SIZE = 2
    row_format_list = [""]
    header_sep_list = [""]
    line_length_list = [-SPACING_SIZE]

    def add_column(padding, text_dir='<'):
        row_format_list[0] += '{: ' + text_dir + str(padding) + '}' + (
            ' ' * SPACING_SIZE)
        header_sep_list[0] += '-' * padding + (' ' * SPACING_SIZE)
        line_length_list[0] += padding + SPACING_SIZE

    def add_title(padding, text):
        left_length = padding - len(text)
        half = left_length // 2
        return '-' * half + text + '-' * (left_length - half)

    result = []

    def append(s):
        result.append(s)
        result.append('\n')

    def format_time(time, unit='ms', indent=0):
        r"""
        Transform time in ns to time in unit.
        """
        if time == float('inf'):
            return '-'
        else:
            result = float(time)
            if unit == 's':
                result /= 1e9
            elif unit == 'ms':
                result /= 1e6
            elif unit == 'us':
                result /= 1e3
            return '{}{:.2f}'.format(' ' * indent, result)

    def format_ratio(ratio, indent=0):
        r"""
        Transform ratio within [0, 1] to percentage presentation.
        """
        return '{}{:.2f}'.format(' ' * indent, ratio * 100)

    total_time = statistic_data.time_range_summary.get_cpu_range_sum(
        TracerEventType.ProfileStep)
    ###### Print Device Summary ######
    headers = ['Device', 'Utilization (%)']
    name_column_width = 30
    DEFAULT_COLUMN_WIDTH = 20
    add_column(name_column_width)
    for _ in headers[1:]:
        add_column(DEFAULT_COLUMN_WIDTH)

    row_format = row_format_list[0]
    header_sep = header_sep_list[0]
    line_length = line_length_list[0]

    # construct table string

    append(add_title(line_length, "Device Summary"))
    append(header_sep)
    append(row_format.format(*headers))
    append(header_sep)
    row_values = [
        'CPU(Process)', format_ratio(
            float(statistic_data.extra_info['Process Cpu Utilization']))
    ]
    append(row_format.format(*row_values))
    row_values = [
        'CPU(System)', format_ratio(
            float(statistic_data.extra_info['System Cpu Utilization']))
    ]
    append(row_format.format(*row_values))
    for gpu_name in statistic_data.time_range_summary.get_gpu_devices():
        gpu_time = float(
            statistic_data.time_range_summary.get_gpu_range_sum(
                gpu_name, TracerEventType.Kernel))
        utilization = gpu_time / total_time
        row_values = ['GPU{}'.format(gpu_name), format_ratio(utilization)]
        append(row_format.format(*row_values))

    append(header_sep)
    append(
        "Note:\nCPU(Process) Utilization = Current process CPU time over all cpu cores / elapsed time, so max utilization can be reached 100% * number of cpu cores.\n"
        "CPU(System) Utilization = All processes CPU time over all cpu cores(busy time) / (busy time + idle time).\n"
C
chenjian 已提交
700
        "GPU Utilization = Current process GPU time / elapsed time.")
C
chenjian 已提交
701 702 703 704 705 706 707 708
    append('-' * line_length)
    append('')
    append('')

    if total_time == 0:
        return ''.join(result)

    ###### Print Overview Summary ######
C
chenjian 已提交
709
    headers = ['Event Type', 'Calls', 'CPU Time', 'Ratio (%)']
C
chenjian 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    row_format_list = [""]
    header_sep_list = [""]
    line_length_list = [-SPACING_SIZE]

    DEFAULT_COLUMN_WIDTH = 25
    for _ in headers:
        add_column(DEFAULT_COLUMN_WIDTH)

    row_format = row_format_list[0]
    header_sep = header_sep_list[0]
    line_length = line_length_list[0]

    # construct table string
    append(add_title(line_length, "Overview Summary"))
    append('Time unit: {}'.format(time_unit))
    append(header_sep)
    append(row_format.format(*headers))
    append(header_sep)
    cpu_type_time = collections.defaultdict(int)
    gpu_type_time = collections.defaultdict(int)
C
chenjian 已提交
730 731 732 733 734
    cpu_call_times = collections.defaultdict(int)
    gpu_call_times = collections.defaultdict(int)
    cpu_call_times.update(statistic_data.time_range_summary.call_times)
    gpu_call_times.update(statistic_data.time_range_summary.call_times)

C
chenjian 已提交
735 736
    for event_type, value in statistic_data.time_range_summary.CPUTimeRangeSum.items(
    ):
C
chenjian 已提交
737 738 739 740 741
        if event_type != TracerEventType.Communication:
            cpu_type_time[event_type] = value
    if statistic_data.distributed_summary.cpu_communication_range:
        cpu_type_time[TracerEventType.Communication] = sum_ranges(
            statistic_data.distributed_summary.cpu_communication_range)
C
chenjian 已提交
742 743 744
        cpu_call_times[
            TracerEventType.
            Communication] = statistic_data.distributed_summary.cpu_calls
C
chenjian 已提交
745

C
chenjian 已提交
746 747 748 749 750 751 752 753 754 755
    for event_type in [
            TracerEventType.Dataloader, TracerEventType.Forward,
            TracerEventType.Backward, TracerEventType.Optimization
    ]:
        event_type_name = str(event_type).split('.')[1]
        if event_type in cpu_call_times and event_type_name in statistic_data.event_summary.model_perspective_items:
            cpu_call_times[
                event_type] = statistic_data.event_summary.model_perspective_items[
                    event_type_name].call

C
chenjian 已提交
756 757 758 759 760 761 762 763
    gpu_time_range = collections.defaultdict(list)
    for device_id, device_time_ranges in statistic_data.time_range_summary.GPUTimeRange.items(
    ):
        for event_type, time_range in device_time_ranges.items():
            gpu_time_range[event_type] = merge_ranges(
                gpu_time_range[event_type], time_range, is_sorted=True)
    for event_type, time_range in gpu_time_range.items():
        gpu_type_time[event_type] = sum_ranges(time_range)
C
chenjian 已提交
764 765 766
    if statistic_data.distributed_summary.gpu_communication_range:
        gpu_type_time[TracerEventType.Communication] = sum_ranges(
            statistic_data.distributed_summary.gpu_communication_range)
C
chenjian 已提交
767 768 769
        gpu_call_times[
            TracerEventType.
            Communication] = statistic_data.distributed_summary.gpu_calls
C
chenjian 已提交
770 771 772

    sorted_items = sorted(
        cpu_type_time.items(), key=lambda x: x[1], reverse=True)
C
chenjian 已提交
773 774 775 776 777 778 779 780
    event_type, time = sorted_items[0]
    row_values = [
        '{}'.format(str(event_type).split('.')[1]), cpu_call_times[event_type],
        format_time(
            time, unit=time_unit), format_ratio(float(time) / total_time)
    ]
    append(row_format.format(*row_values))
    for event_type, time in sorted_items[1:]:
C
chenjian 已提交
781
        row_values = [
C
chenjian 已提交
782 783
            '  {}'.format(str(event_type).split('.')[1]),
            cpu_call_times[event_type], format_time(
C
chenjian 已提交
784 785 786 787
                time, unit=time_unit), format_ratio(float(time) / total_time)
        ]
        append(row_format.format(*row_values))
    append(header_sep)
C
chenjian 已提交
788
    headers = ['', 'Calls', 'GPU Time', 'Ratio (%)']
C
chenjian 已提交
789 790 791 792
    append(row_format.format(*headers))
    append(header_sep)
    for event_type, time in gpu_type_time.items():
        row_values = [
C
chenjian 已提交
793 794
            '  {}'.format(str(event_type).split('.')[1]),
            gpu_call_times[event_type], format_time(
C
chenjian 已提交
795 796 797 798 799 800 801 802
                time, unit=time_unit), format_ratio(float(time) / total_time)
        ]
        append(row_format.format(*row_values))

    append(header_sep)
    append(
        "Note:\nIn this table, We sum up all collected events in terms of event type.\n"
        "The time of events collected on host are presented as CPU Time, and as GPU Time if on device.\n"
C
chenjian 已提交
803
        "The time with ratio 100% is the base time for calculating ratio. \n"
C
chenjian 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816
        "Events with different types may overlap or inclusion, e.g. Operator includes OperatorInner, so the sum of ratios is not 100%.\n"
        "The time of events in the same type with overlap will not calculate twice, and all time is summed after merged.\n"
        "Example:\n"
        "Thread 1:\n"
        "  Operator: |___________|     |__________|\n"
        "Thread 2:\n"
        "  Operator:   |____________|     |___|\n"
        "After merged:\n"
        "  Result:   |______________|  |__________|\n")
    append('-' * line_length)
    append('')
    append('')

C
chenjian 已提交
817 818
    ###### Print Model Summary Report ######
    model_perspective_items = statistic_data.event_summary.model_perspective_items
C
chenjian 已提交
819
    if len(model_perspective_items) > 1:
C
chenjian 已提交
820 821
        all_row_values = []
        accmulation_time = 0
C
chenjian 已提交
822 823 824 825 826 827
        gpu_accmulation_time = 0
        gpu_total_time = 0
        for name in [
                'ProfileStep', 'Dataloader', 'Forward', 'Backward',
                'Optimization'
        ]:
C
chenjian 已提交
828 829
            if name in model_perspective_items:
                item = model_perspective_items[name]
C
chenjian 已提交
830 831
                name = '{}'.format(
                    name) if 'ProfileStep' in name else '  {}'.format(name)
C
chenjian 已提交
832
                row_values = [
C
chenjian 已提交
833
                    '{}'.format(name), item.call,
C
chenjian 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
                    '{} / {} / {} / {} / {}'.format(
                        format_time(
                            item.cpu_time, unit=time_unit),
                        format_time(
                            item.avg_cpu_time, unit=time_unit),
                        format_time(
                            item.max_cpu_time, unit=time_unit),
                        format_time(
                            item.min_cpu_time, unit=time_unit),
                        format_ratio(float(item.cpu_time) / total_time)),
                    '{} / {} / {} / {} / {}'.format(
                        format_time(
                            item.gpu_time, unit=time_unit),
                        format_time(
                            item.avg_gpu_time, unit=time_unit),
                        format_time(
                            item.max_gpu_time, unit=time_unit),
                        format_time(
                            item.min_gpu_time, unit=time_unit),
                        format_ratio(float(item.gpu_time) / total_time))
                ]
C
chenjian 已提交
855
                all_row_values.append(row_values)
C
chenjian 已提交
856 857 858 859 860
                if 'ProfileStep' not in name:
                    accmulation_time += item.cpu_time
                    gpu_accmulation_time += item.gpu_time
                else:
                    gpu_total_time = item.gpu_time
C
chenjian 已提交
861 862

        other_time = total_time - accmulation_time
C
chenjian 已提交
863
        other_gpu_time = gpu_total_time - gpu_accmulation_time
C
chenjian 已提交
864 865 866 867 868
        row_values = [
            '  Others', '-', '{} / - / - / - / {}'.format(
                format_time(
                    other_time, unit=time_unit),
                format_ratio(float(other_time) / total_time)),
C
chenjian 已提交
869 870 871
            '{} / - / - / - / {}'.format(
                format_time(
                    other_gpu_time, unit=time_unit),
872
                format_ratio(float(other_gpu_time) / total_time))
C
chenjian 已提交
873
        ]
C
chenjian 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
        all_row_values.append(row_values)
        # Calculate the column width
        calltime_width = 6
        cpu_data_description_width = 40
        gpu_data_description_width = 40
        for row_values in all_row_values:
            if isinstance(row_values[1],
                          int) and len(str(row_values[1])) > calltime_width:
                calltime_width = len(str(row_values[1]))
            if len(row_values[2]) > cpu_data_description_width:
                cpu_data_description_width = len(row_values[2])
            if len(row_values[3]) > gpu_data_description_width:
                gpu_data_description_width = len(row_values[3])
        headers = [
            'Name', 'Calls', 'CPU Total / Avg / Max / Min / Ratio(%)',
            'GPU Total / Avg / Max / Min / Ratio(%)'
        ]
        row_format_list = [""]
        header_sep_list = [""]
        line_length_list = [-SPACING_SIZE]
        name_column_width = 15
        add_column(name_column_width)
        add_column(calltime_width)
        add_column(cpu_data_description_width)
        add_column(gpu_data_description_width)

        row_format = row_format_list[0]
        header_sep = header_sep_list[0]
        line_length = line_length_list[0]

        # construct table string
        append(add_title(line_length, "Model Summary"))
        append('Time unit: {}'.format(time_unit))
        append(header_sep)
        append(row_format.format(*headers))
C
chenjian 已提交
909
        append(header_sep)
C
chenjian 已提交
910 911 912 913 914 915
        for row_values in all_row_values:
            append(row_format.format(*row_values))
        append(header_sep)
        append(
            "Note:\nIn this table, GPU time is the sum of all device(GPU) events called in the phase.\n"
            "Unlike overview summary, if two device(GPU) events execute on different streams with overlap time, we sum them directly here.\n"
C
chenjian 已提交
916
            "The time with ratio 100% is the base time for calculating ratio. \n"
C
chenjian 已提交
917 918
        )
        append('-' * line_length)
C
chenjian 已提交
919 920 921 922
        append('')
        append('')

    ###### Print Distribution Summary Report ######
C
chenjian 已提交
923
    if statistic_data.distributed_summary.communication_range:
C
chenjian 已提交
924 925 926 927 928 929 930 931 932
        headers = [
            'Name',
            'Total Time',
            'Ratio (%)',
        ]
        row_format_list = [""]
        header_sep_list = [""]
        line_length_list = [-SPACING_SIZE]

C
chenjian 已提交
933
        DEFAULT_COLUMN_WIDTH = 25
C
chenjian 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946
        for _ in headers:
            add_column(DEFAULT_COLUMN_WIDTH)

        row_format = row_format_list[0]
        header_sep = header_sep_list[0]
        line_length = line_length_list[0]

        # construct table string
        append(add_title(line_length, "Distribution Summary"))
        append('Time unit: {}'.format(time_unit))
        append(header_sep)
        append(row_format.format(*headers))
        append(header_sep)
C
chenjian 已提交
947 948 949 950 951 952
        communication_time = sum_ranges(
            statistic_data.distributed_summary.communication_range)
        computation_time = sum_ranges(
            statistic_data.distributed_summary.computation_range)
        overlap_time = sum_ranges(
            statistic_data.distributed_summary.overlap_range)
C
chenjian 已提交
953
        row_values = [
C
chenjian 已提交
954 955 956 957 958 959 960
            'ProfileStep', format_time(
                total_time, unit=time_unit),
            format_ratio(float(total_time) / total_time)
        ]
        append(row_format.format(*row_values))
        row_values = [
            '  Communication', format_time(
C
chenjian 已提交
961 962 963 964 965 966
                communication_time, unit=time_unit),
            format_ratio(float(communication_time) / total_time)
        ]
        append(row_format.format(*row_values))

        row_values = [
C
chenjian 已提交
967
            '  Computation', format_time(
C
chenjian 已提交
968 969 970 971 972 973
                computation_time, unit=time_unit),
            format_ratio(float(computation_time) / total_time)
        ]
        append(row_format.format(*row_values))

        row_values = [
C
chenjian 已提交
974
            '  Overlap', format_time(
C
chenjian 已提交
975 976 977 978 979 980
                overlap_time, unit=time_unit),
            format_ratio(float(overlap_time) / total_time)
        ]
        append(row_format.format(*row_values))
        append(header_sep)
        append(
C
chenjian 已提交
981 982 983
            "Note:\nCommunication time: Communication Event time, Communication Op time and its kernel time on gpu.\n"
            "Computation time: Kernel time, except kernels belong to communication(nccl kernels).\n"
            "Overlap time: Communication time intersects with computation time.\n"
C
chenjian 已提交
984
            "The time with ratio 100% is the base time for calculating ratio. \n"
C
chenjian 已提交
985 986 987 988 989 990 991 992 993 994 995 996
            "Example:\n"
            "Communication:\n"
            "  CPU:              |_________________|\n"
            "  GPU:                                  |______________|\n"
            "  Total:            |_________________| |______________|\n"
            "Computation time(Kernel):\n"
            "  GPU:         |________________|\n"
            "Overlap time:       |___________|\n")
        append('-' * line_length)
        append('')
        append('')

C
chenjian 已提交
997 998
    ###### Print Operator Summary Report ######
    if statistic_data.event_summary.items:
C
chenjian 已提交
999 1000
        all_row_values = []
        name_column_width = 52
C
chenjian 已提交
1001 1002 1003 1004 1005 1006 1007
        if thread_sep == True:
            thread_items = statistic_data.event_summary.thread_items
        else:
            thread_items = {
                'All threads merged': statistic_data.event_summary.items
            }
        for thread_id, items in thread_items.items():
C
chenjian 已提交
1008
            all_row_values.append("Thread: {}".format(thread_id))
C
chenjian 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
            if sorted_by == SortedKeys.CPUTotal:
                sorted_items = sorted(
                    items.items(), key=lambda x: x[1].cpu_time, reverse=True)
            elif sorted_by == SortedKeys.CPUAvg:
                sorted_items = sorted(
                    items.items(),
                    key=lambda x: x[1].avg_cpu_time,
                    reverse=True)
            elif sorted_by == SortedKeys.CPUMax:
                sorted_items = sorted(
                    items.items(),
                    key=lambda x: x[1].max_cpu_time,
                    reverse=True)
            elif sorted_by == SortedKeys.CPUMin:
                sorted_items = sorted(
                    items.items(), key=lambda x: x[1].min_cpu_time)
            elif sorted_by == SortedKeys.GPUTotal:
                sorted_items = sorted(
C
chenjian 已提交
1027 1028 1029
                    items.items(),
                    key=lambda x: x[1].general_gpu_time,
                    reverse=True)
C
chenjian 已提交
1030 1031 1032
            elif sorted_by == SortedKeys.GPUAvg:
                sorted_items = sorted(
                    items.items(),
C
chenjian 已提交
1033
                    key=lambda x: x[1].avg_general_gpu_time,
C
chenjian 已提交
1034 1035 1036 1037
                    reverse=True)
            elif sorted_by == SortedKeys.GPUMax:
                sorted_items = sorted(
                    items.items(),
C
chenjian 已提交
1038
                    key=lambda x: x[1].max_general_gpu_time,
C
chenjian 已提交
1039 1040 1041
                    reverse=True)
            elif sorted_by == SortedKeys.GPUMin:
                sorted_items = sorted(
C
chenjian 已提交
1042
                    items.items(), key=lambda x: x[1].min_general_gpu_time)
C
chenjian 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

            for name, item in sorted_items:
                row_values = [
                    name, item.call, '{} / {} / {} / {} / {}'.format(
                        format_time(
                            item.cpu_time, unit=time_unit),
                        format_time(
                            item.avg_cpu_time, unit=time_unit),
                        format_time(
                            item.max_cpu_time, unit=time_unit),
                        format_time(
                            item.min_cpu_time, unit=time_unit),
C
chenjian 已提交
1055
                        format_ratio(float(item.cpu_time) / total_time)),
C
chenjian 已提交
1056 1057
                    '{} / {} / {} / {} / {}'.format(
                        format_time(
C
chenjian 已提交
1058
                            item.general_gpu_time, unit=time_unit),
C
chenjian 已提交
1059
                        format_time(
C
chenjian 已提交
1060
                            item.avg_general_gpu_time, unit=time_unit),
C
chenjian 已提交
1061
                        format_time(
C
chenjian 已提交
1062
                            item.max_general_gpu_time, unit=time_unit),
C
chenjian 已提交
1063
                        format_time(
C
chenjian 已提交
1064 1065 1066
                            item.min_general_gpu_time, unit=time_unit),
                        format_ratio(
                            float(item.general_gpu_time) / total_time))
C
chenjian 已提交
1067
                ]
C
chenjian 已提交
1068
                all_row_values.append(row_values)
C
chenjian 已提交
1069 1070 1071
                if op_detail:
                    for innerop_name, innerop_node in item.operator_inners.items(
                    ):
C
chenjian 已提交
1072 1073 1074
                        if len(innerop_name) + 2 > name_column_width:
                            innerop_name = innerop_name[:name_column_width - 5]
                            innerop_name += "..."
C
chenjian 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
                        row_values = [
                            '  {}'.format(innerop_name), innerop_node.call,
                            '{} / {} / {} / {} / {}'.format(
                                format_time(
                                    innerop_node.cpu_time, unit=time_unit),
                                format_time(
                                    innerop_node.avg_cpu_time, unit=time_unit),
                                format_time(
                                    innerop_node.max_cpu_time, unit=time_unit),
                                format_time(
                                    innerop_node.min_cpu_time, unit=time_unit),
                                format_ratio(
C
chenjian 已提交
1087
                                    float(innerop_node.cpu_time) / total_time)),
C
chenjian 已提交
1088 1089
                            '{} / {} / {} / {} / {}'.format(
                                format_time(
C
chenjian 已提交
1090 1091
                                    innerop_node.general_gpu_time,
                                    unit=time_unit),
C
chenjian 已提交
1092
                                format_time(
C
chenjian 已提交
1093 1094
                                    innerop_node.avg_general_gpu_time,
                                    unit=time_unit),
C
chenjian 已提交
1095
                                format_time(
C
chenjian 已提交
1096 1097
                                    innerop_node.max_general_gpu_time,
                                    unit=time_unit),
C
chenjian 已提交
1098
                                format_time(
C
chenjian 已提交
1099 1100
                                    innerop_node.min_general_gpu_time,
                                    unit=time_unit),
C
chenjian 已提交
1101
                                format_ratio(
C
chenjian 已提交
1102 1103
                                    float(innerop_node.general_gpu_time) /
                                    total_time))
C
chenjian 已提交
1104
                        ]
C
chenjian 已提交
1105
                        all_row_values.append(row_values)
C
chenjian 已提交
1106
                        for device_node_name, device_node in innerop_node.devices.items(
C
chenjian 已提交
1107 1108 1109 1110 1111 1112 1113 1114
                        ):
                            if len(device_node_name) + 4 > name_column_width:
                                device_node_name = device_node_name[:
                                                                    name_column_width
                                                                    - 7]
                                device_node_name += "..."
                            row_values = [
                                '    {}'.format(device_node_name),
C
chenjian 已提交
1115
                                device_node.call, '- / - / - / - / -',
C
chenjian 已提交
1116 1117
                                '{} / {} / {} / {} / {}'.format(
                                    format_time(
C
chenjian 已提交
1118
                                        device_node.gpu_time, unit=time_unit),
C
chenjian 已提交
1119
                                    format_time(
C
chenjian 已提交
1120
                                        device_node.avg_gpu_time,
C
chenjian 已提交
1121 1122
                                        unit=time_unit),
                                    format_time(
C
chenjian 已提交
1123
                                        device_node.max_gpu_time,
C
chenjian 已提交
1124 1125
                                        unit=time_unit),
                                    format_time(
C
chenjian 已提交
1126
                                        device_node.min_gpu_time,
C
chenjian 已提交
1127 1128
                                        unit=time_unit),
                                    format_ratio(
C
chenjian 已提交
1129
                                        float(device_node.gpu_time) /
C
chenjian 已提交
1130
                                        total_time))
C
chenjian 已提交
1131
                            ]
C
chenjian 已提交
1132
                            all_row_values.append(row_values)
C
chenjian 已提交
1133 1134 1135 1136 1137 1138 1139
                    for device_node_name, device_node in item.devices.items():
                        if len(device_node_name) + 2 > name_column_width:
                            device_node_name = device_node_name[:
                                                                name_column_width
                                                                - 5]
                            device_node_name += "..."
                        row_values = [
C
chenjian 已提交
1140
                            '  {}'.format(device_node_name), device_node.call,
C
chenjian 已提交
1141 1142 1143
                            '- / - / - / - / -',
                            '{} / {} / {} / {} / {}'.format(
                                format_time(
C
chenjian 已提交
1144
                                    device_node.gpu_time, unit=time_unit),
C
chenjian 已提交
1145
                                format_time(
C
chenjian 已提交
1146
                                    device_node.avg_gpu_time, unit=time_unit),
C
chenjian 已提交
1147
                                format_time(
C
chenjian 已提交
1148
                                    device_node.max_gpu_time, unit=time_unit),
C
chenjian 已提交
1149
                                format_time(
C
chenjian 已提交
1150
                                    device_node.min_gpu_time, unit=time_unit),
C
chenjian 已提交
1151
                                format_ratio(
C
chenjian 已提交
1152
                                    float(device_node.gpu_time) / total_time))
C
chenjian 已提交
1153
                        ]
C
chenjian 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
                        all_row_values.append(row_values)
        # Calculate the column width
        calltime_width = 6
        cpu_data_description_width = 40
        gpu_data_description_width = 40
        for row_values in all_row_values:
            if isinstance(row_values, str):
                continue
            if isinstance(row_values[1],
                          int) and len(str(row_values[1])) > calltime_width:
                calltime_width = len(str(row_values[1]))
            if len(row_values[2]) > cpu_data_description_width:
                cpu_data_description_width = len(row_values[2])
            if len(row_values[3]) > gpu_data_description_width:
                gpu_data_description_width = len(row_values[3])
C
chenjian 已提交
1169 1170 1171 1172 1173 1174 1175 1176
        headers = [
            'Name', 'Calls', 'CPU Total / Avg / Max / Min / Ratio(%)',
            'GPU Total / Avg / Max / Min / Ratio(%)'
        ]
        row_format_list = [""]
        header_sep_list = [""]
        line_length_list = [-SPACING_SIZE]
        add_column(name_column_width)
C
chenjian 已提交
1177 1178 1179
        add_column(calltime_width)
        add_column(cpu_data_description_width)
        add_column(gpu_data_description_width)
C
chenjian 已提交
1180 1181 1182 1183 1184 1185

        row_format = row_format_list[0]
        header_sep = header_sep_list[0]
        line_length = line_length_list[0]

        # construct table string
C
chenjian 已提交
1186
        append(add_title(line_length, "Operator Summary"))
C
chenjian 已提交
1187 1188 1189 1190
        append('Time unit: {}'.format(time_unit))
        append(header_sep)
        append(row_format.format(*headers))
        append(header_sep)
C
chenjian 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        for row_values in all_row_values:
            if isinstance(row_values, str):
                append(add_title(line_length, row_values))
            else:
                append(row_format.format(*row_values))
        append(header_sep)
        append('')
        append('')

    ###### Print Memory Manipulation Summary Report ######
    if statistic_data.event_summary.memory_manipulation_items:
        all_row_values = []
C
chenjian 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
        memory_manipulation_items = statistic_data.event_summary.memory_manipulation_items
        for name, item in memory_manipulation_items.items():
            row_values = [
                name,
                item.call,
                '{} / {} / {} / {} / {}'.format(
                    format_time(
                        item.cpu_time, unit=time_unit),
                    format_time(
                        item.avg_cpu_time, unit=time_unit),
                    format_time(
                        item.max_cpu_time, unit=time_unit),
                    format_time(
                        item.min_cpu_time, unit=time_unit),
                    format_ratio(float(item.cpu_time) / total_time)),
                '{} / {} / {} / {} / {}'.format(
                    format_time(
C
chenjian 已提交
1220
                        item.general_gpu_time, unit=time_unit),
C
chenjian 已提交
1221
                    format_time(
C
chenjian 已提交
1222
                        item.avg_general_gpu_time, unit=time_unit),
C
chenjian 已提交
1223
                    format_time(
C
chenjian 已提交
1224
                        item.max_general_gpu_time, unit=time_unit),
C
chenjian 已提交
1225
                    format_time(
C
chenjian 已提交
1226 1227
                        item.min_general_gpu_time, unit=time_unit),
                    format_ratio(float(item.general_gpu_time) / total_time)),
C
chenjian 已提交
1228
            ]
C
chenjian 已提交
1229 1230
            all_row_values.append(row_values)

C
chenjian 已提交
1231 1232 1233 1234
        headers = [
            'Name', 'Calls', 'CPU Total / Avg / Max / Min / Ratio(%)',
            'GPU Total / Avg / Max / Min / Ratio(%)'
        ]
C
chenjian 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
        # Calculate the column width
        name_column_width = 0
        calltime_width = 6
        cpu_data_description_width = 40
        gpu_data_description_width = 40
        for row_values in all_row_values:
            if len(row_values[0]) > name_column_width:
                name_column_width = len(row_values[0])
            if isinstance(row_values[1],
                          int) and len(str(row_values[1])) > calltime_width:
                calltime_width = len(str(row_values[1]))
            if len(row_values[2]) > cpu_data_description_width:
                cpu_data_description_width = len(row_values[2])
            if len(row_values[3]) > gpu_data_description_width:
                gpu_data_description_width = len(row_values[3])

C
chenjian 已提交
1251 1252 1253 1254
        row_format_list = [""]
        header_sep_list = [""]
        line_length_list = [-SPACING_SIZE]
        add_column(name_column_width)
C
chenjian 已提交
1255 1256 1257
        add_column(calltime_width)
        add_column(cpu_data_description_width)
        add_column(gpu_data_description_width)
C
chenjian 已提交
1258 1259 1260 1261 1262 1263

        row_format = row_format_list[0]
        header_sep = header_sep_list[0]
        line_length = line_length_list[0]

        # construct table string
C
chenjian 已提交
1264
        append(add_title(line_length, "Memory Manipulation Summary"))
C
chenjian 已提交
1265 1266 1267 1268
        append('Time unit: {}'.format(time_unit))
        append(header_sep)
        append(row_format.format(*headers))
        append(header_sep)
C
chenjian 已提交
1269 1270 1271 1272 1273 1274 1275 1276
        for row_values in all_row_values:
            append(row_format.format(*row_values))
        append(header_sep)
        append('')
        append('')
    ###### Print UserDefined Summary Report ######
    if statistic_data.event_summary.userdefined_items:
        all_row_values = []
C
chenjian 已提交
1277 1278 1279 1280 1281 1282 1283 1284
        if thread_sep == True:
            userdefined_thread_items = statistic_data.event_summary.userdefined_thread_items
        else:
            userdefined_thread_items = {
                'All threads merged':
                statistic_data.event_summary.userdefined_items
            }
        for thread_id, items in userdefined_thread_items.items():
C
chenjian 已提交
1285
            all_row_values.append("Thread: {}".format(thread_id))
C
chenjian 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
            if sorted_by == SortedKeys.CPUTotal:
                sorted_items = sorted(
                    items.items(), key=lambda x: x[1].cpu_time, reverse=True)
            elif sorted_by == SortedKeys.CPUAvg:
                sorted_items = sorted(
                    items.items(),
                    key=lambda x: x[1].avg_cpu_time,
                    reverse=True)
            elif sorted_by == SortedKeys.CPUMax:
                sorted_items = sorted(
                    items.items(),
                    key=lambda x: x[1].max_cpu_time,
                    reverse=True)
            elif sorted_by == SortedKeys.CPUMin:
                sorted_items = sorted(
                    items.items(), key=lambda x: x[1].min_cpu_time)
            elif sorted_by == SortedKeys.GPUTotal:
                sorted_items = sorted(
C
chenjian 已提交
1304 1305 1306
                    items.items(),
                    key=lambda x: x[1].general_gpu_time,
                    reverse=True)
C
chenjian 已提交
1307 1308 1309
            elif sorted_by == SortedKeys.GPUAvg:
                sorted_items = sorted(
                    items.items(),
C
chenjian 已提交
1310
                    key=lambda x: x[1].avg_general_gpu_time,
C
chenjian 已提交
1311 1312 1313 1314
                    reverse=True)
            elif sorted_by == SortedKeys.GPUMax:
                sorted_items = sorted(
                    items.items(),
C
chenjian 已提交
1315
                    key=lambda x: x[1].max_general_gpu_time,
C
chenjian 已提交
1316 1317 1318
                    reverse=True)
            elif sorted_by == SortedKeys.GPUMin:
                sorted_items = sorted(
C
chenjian 已提交
1319
                    items.items(), key=lambda x: x[1].min_general_gpu_time)
C
chenjian 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

            for name, item in sorted_items:
                row_values = [
                    name,
                    item.call,
                    '{} / {} / {} / {} / {}'.format(
                        format_time(
                            item.cpu_time, unit=time_unit),
                        format_time(
                            item.avg_cpu_time, unit=time_unit),
                        format_time(
                            item.max_cpu_time, unit=time_unit),
                        format_time(
                            item.min_cpu_time, unit=time_unit),
                        format_ratio(float(item.cpu_time) / total_time)),
                    '{} / {} / {} / {} / {}'.format(
                        format_time(
C
chenjian 已提交
1337
                            item.general_gpu_time, unit=time_unit),
C
chenjian 已提交
1338
                        format_time(
C
chenjian 已提交
1339
                            item.avg_general_gpu_time, unit=time_unit),
C
chenjian 已提交
1340
                        format_time(
C
chenjian 已提交
1341
                            item.max_general_gpu_time, unit=time_unit),
C
chenjian 已提交
1342
                        format_time(
C
chenjian 已提交
1343 1344 1345
                            item.min_general_gpu_time, unit=time_unit),
                        format_ratio(
                            float(item.general_gpu_time) / total_time)),
C
chenjian 已提交
1346
                ]
C
chenjian 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
                all_row_values.append(row_values)

        # Calculate the column width
        name_column_width = 0
        calltime_width = 6
        cpu_data_description_width = 40
        gpu_data_description_width = 40
        for row_values in all_row_values:
            if isinstance(row_values, str):
                continue
            if len(row_values[0]) > name_column_width:
                name_column_width = len(row_values[0])
            if isinstance(row_values[1],
                          int) and len(str(row_values[1])) > calltime_width:
                calltime_width = len(str(row_values[1]))
            if len(row_values[2]) > cpu_data_description_width:
                cpu_data_description_width = len(row_values[2])
            if len(row_values[3]) > gpu_data_description_width:
                gpu_data_description_width = len(row_values[3])

        headers = [
            'Name', 'Calls', 'CPU Total / Avg / Max / Min / Ratio(%)',
            'GPU Total / Avg / Max / Min / Ratio(%)'
        ]
        row_format_list = [""]
        header_sep_list = [""]
        line_length_list = [-SPACING_SIZE]

        add_column(name_column_width)
        add_column(calltime_width)
        add_column(cpu_data_description_width)
        add_column(gpu_data_description_width)

        row_format = row_format_list[0]
        header_sep = header_sep_list[0]
        line_length = line_length_list[0]

        # construct table string
        append(add_title(line_length, "UserDefined Summary"))
        append('Time unit: {}'.format(time_unit))
        append(header_sep)
        append(row_format.format(*headers))
        append(header_sep)
        for row_values in all_row_values:
            if isinstance(row_values, str):
                append(add_title(line_length, row_values))
            else:
C
chenjian 已提交
1394
                append(row_format.format(*row_values))
C
chenjian 已提交
1395 1396 1397
        append('')
        append('')

C
chenjian 已提交
1398
    return ''.join(result)