test_pixel_unshuffle.py 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16
19

20
import paddle
21
import paddle.nn.functional as F
22 23
from paddle import fluid
from paddle.fluid import core
24 25 26 27 28 29 30


def pixel_unshuffle_np(x, down_factor, data_format="NCHW"):
    '''Numpy implementation of pixel unshuffle'''

    if data_format == "NCHW":
        n, c, h, w = x.shape
31 32 33 34 35 36 37 38
        new_shape = (
            n,
            c,
            h // down_factor,
            down_factor,
            w // down_factor,
            down_factor,
        )
39 40 41
        npresult = np.reshape(x, new_shape)
        npresult = npresult.transpose(0, 1, 3, 5, 2, 4)
        oshape = [
42 43 44 45
            n,
            c * down_factor * down_factor,
            h // down_factor,
            w // down_factor,
46 47 48 49 50
        ]
        npresult = np.reshape(npresult, oshape)
        return npresult
    else:
        n, h, w, c = x.shape
51 52 53 54 55 56 57 58
        new_shape = (
            n,
            h // down_factor,
            down_factor,
            w // down_factor,
            down_factor,
            c,
        )
59 60 61
        npresult = np.reshape(x, new_shape)
        npresult = npresult.transpose(0, 1, 3, 5, 2, 4)
        oshape = [
62 63 64 65
            n,
            h // down_factor,
            w // down_factor,
            c * down_factor * down_factor,
66 67 68 69 70
        ]
        npresult = np.reshape(npresult, oshape)
        return npresult


W
wanghuancoder 已提交
71 72 73 74 75 76
def pixel_unshuffle_wrapper(x, downscale_factor, data_format):
    return paddle._legacy_C_ops.pixel_unshuffle(
        x, "downscale_factor", downscale_factor, "data_format", data_format
    )


77 78 79 80 81 82 83
class TestPixelUnshuffleOp(OpTest):
    '''TestPixelUnshuffleOp'''

    def setUp(self):
        '''setUp'''

        self.op_type = "pixel_unshuffle"
W
wanghuancoder 已提交
84
        self.python_api = pixel_unshuffle_wrapper
85
        self.init_dtype()
86 87 88 89 90 91 92 93 94 95
        self.init_data_format()
        n, c, h, w = 2, 1, 12, 12

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        down_factor = 3

96
        x = np.random.random(shape).astype(self.dtype)
97 98 99 100 101 102
        npresult = pixel_unshuffle_np(x, down_factor, self.format)

        self.inputs = {"X": x}
        self.outputs = {"Out": npresult}
        self.attrs = {
            "downscale_factor": down_factor,
103
            "data_format": self.format,
104 105
        }

106 107 108
    def init_dtype(self):
        self.dtype = np.float64

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    def init_data_format(self):
        '''init_data_format'''

        self.format = "NCHW"

    def test_check_output(self):
        '''test_check_output'''

        self.check_output()

    def test_check_grad(self):
        '''test_check_grad'''

        self.check_grad(["X"], "Out")


class TestChannelLast(TestPixelUnshuffleOp):
    '''TestChannelLast'''

    def init_data_format(self):
        '''init_data_format'''

        self.format = "NHWC"


134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
class TestPixelUnshuffleFP16Op(TestPixelUnshuffleOp):
    def init_dtype(self):
        self.dtype = np.float16


@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support bfloat16",
)
class TestPixelUnshuffleBP16Op(OpTest):
    '''TestPixelUnshuffleBP16Op'''

    def setUp(self):
        self.op_type = "pixel_unshuffle"
        self.python_api = pixel_unshuffle_wrapper
        self.init_dtype()
        self.init_data_format()
        n, c, h, w = 2, 1, 12, 12

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        down_factor = 3

        x = np.random.random(shape).astype(self.np_dtype)
        npresult = pixel_unshuffle_np(x, down_factor, self.format)

        self.inputs = {"X": x}
        self.outputs = {"Out": npresult}
        self.attrs = {
            "downscale_factor": down_factor,
            "data_format": self.format,
        }

        self.place = core.CUDAPlace(0)
        self.inputs['X'] = convert_float_to_uint16(self.inputs['X'])
        self.outputs['Out'] = convert_float_to_uint16(self.outputs['Out'])

    def init_dtype(self):
        self.dtype = np.uint16
        self.np_dtype = np.float32

    def init_data_format(self):
        self.format = "NCHW"

    def test_check_output(self):
        self.check_output_with_place(self.place)

    def test_check_grad(self):
        self.check_grad_with_place(
            self.place,
            ['X'],
            'Out',
        )


193 194 195 196 197 198 199 200 201 202 203 204 205 206
class TestPixelUnshuffleAPI(unittest.TestCase):
    '''TestPixelUnshuffleAPI'''

    def setUp(self):
        '''setUp'''

        self.x_1_np = np.random.random([2, 1, 12, 12]).astype("float64")
        self.x_2_np = np.random.random([2, 12, 12, 1]).astype("float64")
        self.out_1_np = pixel_unshuffle_np(self.x_1_np, 3)
        self.out_2_np = pixel_unshuffle_np(self.x_2_np, 3, "NHWC")

    def test_static_graph_functional(self):
        '''test_static_graph_functional'''

207 208 209
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
210 211 212
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
213
            x_1 = paddle.static.data(
214 215
                name="x", shape=[2, 1, 12, 12], dtype="float64"
            )
216
            x_2 = paddle.static.data(
217 218
                name="x2", shape=[2, 12, 12, 1], dtype="float64"
            )
219 220 221 222
            out_1 = F.pixel_unshuffle(x_1, 3)
            out_2 = F.pixel_unshuffle(x_2, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
223 224 225 226 227 228 229 230 231 232 233 234 235
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
236 237 238 239 240 241 242 243

            assert np.allclose(res_1, self.out_1_np)
            assert np.allclose(res_2, self.out_2_np)

    # same test between layer and functional in this op.
    def test_static_graph_layer(self):
        '''test_static_graph_layer'''

244 245 246
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
247 248 249
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
250
            x_1 = paddle.static.data(
251 252
                name="x", shape=[2, 1, 12, 12], dtype="float64"
            )
253
            x_2 = paddle.static.data(
254 255
                name="x2", shape=[2, 12, 12, 1], dtype="float64"
            )
256 257 258 259 260 261 262 263 264
            # init instance
            ps_1 = paddle.nn.PixelUnshuffle(3)
            ps_2 = paddle.nn.PixelUnshuffle(3, "NHWC")
            out_1 = ps_1(x_1)
            out_2 = ps_2(x_2)
            out_1_np = pixel_unshuffle_np(self.x_1_np, 3)
            out_2_np = pixel_unshuffle_np(self.x_2_np, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
265 266 267 268 269 270 271 272 273 274 275 276 277
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

            assert np.allclose(res_1, out_1_np)
            assert np.allclose(res_2, out_2_np)

    def run_dygraph(self, down_factor, data_format):
        '''run_dygraph'''

        n, c, h, w = 2, 1, 12, 12

        if data_format == "NCHW":
            shape = [n, c, h, w]
        if data_format == "NHWC":
            shape = [n, h, w, c]

        x = np.random.random(shape).astype("float64")

        npresult = pixel_unshuffle_np(x, down_factor, data_format)

296 297 298
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
299 300 301 302
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.disable_static(place=place)

303 304 305
            pixel_unshuffle = paddle.nn.PixelUnshuffle(
                down_factor, data_format=data_format
            )
306 307
            result = pixel_unshuffle(paddle.to_tensor(x))

308
            np.testing.assert_allclose(result.numpy(), npresult, rtol=1e-05)
309

310 311 312 313 314 315
            result_functional = F.pixel_unshuffle(
                paddle.to_tensor(x), 3, data_format
            )
            np.testing.assert_allclose(
                result_functional.numpy(), npresult, rtol=1e-05
            )
316

317
            pixel_unshuffle_str = f'downscale_factor={down_factor}'
318
            if data_format != 'NCHW':
319
                pixel_unshuffle_str += f', data_format={data_format}'
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
            self.assertEqual(pixel_unshuffle.extra_repr(), pixel_unshuffle_str)

    def test_dygraph1(self):
        '''test_dygraph1'''

        self.run_dygraph(3, "NCHW")

    def test_dygraph2(self):
        '''test_dygraph2'''

        self.run_dygraph(3, "NHWC")


class TestPixelUnshuffleError(unittest.TestCase):
    '''TestPixelUnshuffleError'''

    def test_error_functional(self):
        '''test_error_functional'''

        def error_input():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([4, 12, 12]).astype("float64")
                pixel_unshuffle = F.pixel_unshuffle(paddle.to_tensor(x), 2)

        self.assertRaises(ValueError, error_input)

        def error_downscale_factor_1():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                pixel_unshuffle = F.pixel_unshuffle(paddle.to_tensor(x), 3.33)

        self.assertRaises(TypeError, error_downscale_factor_1)

        def error_downscale_factor_2():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                pixel_unshuffle = F.pixel_unshuffle(paddle.to_tensor(x), -1)

        self.assertRaises(ValueError, error_downscale_factor_2)

        def error_data_format():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
363 364 365
                pixel_unshuffle = F.pixel_unshuffle(
                    paddle.to_tensor(x), 3, "WOW"
                )
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

        self.assertRaises(ValueError, error_data_format)

    def test_error_layer(self):
        '''test_error_layer'''

        def error_input_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([4, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(2)
                ps(paddle.to_tensor(x))

        self.assertRaises(ValueError, error_input_layer)

        def error_downscale_factor_layer_1():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(3.33)

        self.assertRaises(TypeError, error_downscale_factor_layer_1)

        def error_downscale_factor_layer_2():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(-1)

        self.assertRaises(ValueError, error_downscale_factor_layer_2)

        def error_data_format_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 1, 12, 12]).astype("float64")
                ps = paddle.nn.PixelUnshuffle(3, "MEOW")

        self.assertRaises(ValueError, error_data_format_layer)


if __name__ == "__main__":
    unittest.main()