distribute_transpiler.py 66.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
S
seiriosPlus 已提交
34
import random
35
import numpy as np
36
import collections
37

38
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
39
from .. import core, framework
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
41
                        default_startup_program, Block, \
W
Wu Yi 已提交
42
                        Parameter, grad_var_name
43 44
from .details import *
from functools import reduce
45 46 47

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
48
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
49 50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
52 53


T
typhoonzero 已提交
54 55 56 57 58 59
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
60

T
typhoonzero 已提交
61 62
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
63 64


65 66 67 68
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
69
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
70
    """
71 72 73 74 75 76
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
77
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
78 79 80

    Args:
        var_list (list): List of variables.
81 82
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
83 84
        min_block_size (int): Minimum splitted block size.
    Returns:
85
        blocks (list[(varname, block_id, current_block_size)]): A list
86
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
87 88 89
    """
    blocks = []
    for var in var_list:
90
        split_count = slice_count
T
typhoonzero 已提交
91 92 93 94
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
95
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
96 97 98 99 100 101 102 103 104
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
105
        # update split_count after aligning
T
typhoonzero 已提交
106
        split_count = int(math.ceil(var_numel / float(block_size)))
107
        for block_id in range(split_count):
T
typhoonzero 已提交
108 109 110 111 112 113 114
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
115 116 117 118 119 120 121
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
122
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
123 124 125 126 127 128 129 130
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
131
class DistributeTranspiler(object):
Y
yi.wu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
166

G
gongweibao 已提交
167 168 169 170 171 172 173 174 175 176 177 178
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

179 180 181 182 183 184 185
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
186 187 188 189 190 191 192 193 194 195 196
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
197 198 199 200
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
G
gongweibao 已提交
201 202 203
        self.origin_startup_program = default_startup_program().clone()

        self.startup_program = default_startup_program()
204 205 206 207 208 209 210
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
211
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
212
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
213
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
214
        self.grad_name_to_param_name = dict()
215 216
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
217
            self.grad_name_to_param_name[grad_var.name] = param_var.name
218

G
gongweibao 已提交
219
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
220
        self._init_splited_vars()
221

G
gongweibao 已提交
222
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
223
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
224
        send_vars = []
225 226 227 228 229 230

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
231
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
232

G
gongweibao 已提交
233
        if not self.config.slice_var_up:
234
            random.seed(self.origin_program.random_seed)
S
seiriosPlus 已提交
235
            random.shuffle(grad_var_mapping_items)
236

237 238
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
239
            eplist = ps_dispatcher.dispatch(splited_vars)
240

G
gongweibao 已提交
241
            if not self.config.slice_var_up:
242 243
                assert (len(splited_vars) == 1)

244
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
245
            if len(splited_vars) == 1:
246
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
247
                index = find_op_by_output_arg(program.global_block(),
248
                                              splited_grad_varname)
Y
Yancey1989 已提交
249
            elif len(splited_vars) > 1:
250
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
251
                index = find_op_by_output_arg(program.global_block(),
252
                                              splited_grad_varname)
Y
Yancey1989 已提交
253
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
254
                index += 1
Y
Yancey1989 已提交
255 256
            else:
                AssertionError("Can not insert the send op by original "
257
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
258

W
Wu Yi 已提交
259 260
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
261
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
262

W
Wu Yi 已提交
263
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
264
                index=index + 1,
265
                type="send",
Y
update  
Yancey1989 已提交
266
                inputs={"X": splited_vars},
267
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
268 269
                attrs={
                    "epmap": eplist,
270
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
271 272
                    OP_ROLE_VAR_ATTR_NAME:
                    [self.grad_name_to_param_name[grad_varname], grad_varname],
273
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
274
                })
Y
update  
Yancey1989 已提交
275 276
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
277 278 279 280 281

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
282
                outputs={},
Y
Yancey1989 已提交
283 284
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
285
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
286
                })
Y
Yancey1989 已提交
287

G
gongweibao 已提交
288
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
289
        recv_vars = []
Y
update  
Yancey1989 已提交
290
        for _, var in enumerate(send_vars):
291
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
292
        ps_dispatcher.reset()
Y
Yancey1989 已提交
293 294
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
295
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
296 297
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
298

Y
Yancey1989 已提交
299
        # step4: Concat the parameters splits together after recv.
300
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
301 302 303 304
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
305 306
            grad_send_dummy_out = grad_name_to_send_dummy_out[
                self.param_name_to_grad_name[param_varname]]
Y
Yancey1989 已提交
307 308
            program.global_block().append_op(
                type="recv",
309
                inputs={"X": [grad_send_dummy_out]},
Y
Yancey1989 已提交
310 311 312
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
313
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
314 315 316 317
                    OP_ROLE_VAR_ATTR_NAME: [
                        param_varname,
                        self.param_name_to_grad_name[param_varname]
                    ],
318
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
319
                })
T
typhoonzero 已提交
320

Q
qiaolongfei 已提交
321 322 323 324 325 326 327 328 329
        if self.sync_mode:
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
                outputs={},
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
330

331
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
332 333
            if len(splited_var) <= 1:
                continue
334
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
335
            program.global_block().append_op(
T
typhoonzero 已提交
336
                type="concat",
T
typhoonzero 已提交
337
                inputs={"X": splited_var},
T
typhoonzero 已提交
338
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
339
                attrs={"axis": 0})
T
typhoonzero 已提交
340

G
gongweibao 已提交
341 342
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

343
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
344 345
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
346
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
347

T
typhoonzero 已提交
348
    def get_trainer_program(self):
Y
yi.wu 已提交
349 350 351 352 353 354
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
355
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
356
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
357
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
358
        self.origin_program.__str__()
G
gongweibao 已提交
359

360
        return self.origin_program
T
typhoonzero 已提交
361

G
gongweibao 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    def _get_trainer_startup_program(self,
                                     recv_vars,
                                     eplist,
                                     startup_program=None):
        """
        Get transpiled trainer side startup program.

        Args:
            startup_program(Program): Startup program.

        Returns:
            Program: trainer side startup program.
        """
        if startup_program is None:
            startup_program = self.startup_program

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

        for varname, splited_var in self.param_var_mapping.iteritems():
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
402
                inputs={"X": []},
G
gongweibao 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
            outputs={},
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        for varname, splited_var in self.param_var_mapping.iteritems():
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
            orig_param = startup_program.global_block().vars[varname]
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
431 432
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
433
        Get parameter server side program.
434

Y
yi.wu 已提交
435 436
        Args:
            endpoint (str): current parameter server endpoint.
437

Y
yi.wu 已提交
438 439
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
440
        """
Y
yi.wu 已提交
441 442 443 444 445
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
446 447
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
448
        pserver_program.random_seed = self.origin_program.random_seed
449
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
450 451 452 453 454 455 456 457
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
458 459 460 461 462
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
463 464 465 466 467 468 469 470 471
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
472
            if self.sync_mode and self.trainer_num > 1:
473
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
474 475 476 477 478 479 480 481 482
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
483

Q
qiaolongfei 已提交
484
        # step 3
485
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
486 487 488
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
489
        # step 3.2
T
typhoonzero 已提交
490 491 492 493
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
494 495
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
496
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
497
        # step 3.3
T
typhoonzero 已提交
498
        # Iterate through the ops, and if an op and the optimize ops
499
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
500
        # append it into the sub program.
T
typhoonzero 已提交
501 502 503

        global_ops = []

Y
wip  
yi.wu 已提交
504 505
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
506
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
507
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
508
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
509
            elif op not in lr_ops:
Q
Qiyang Min 已提交
510
                self._append_pserver_non_opt_ops(block, op)
511 512 513 514 515 516

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
517

Y
Yancey1989 已提交
518
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
519 520 521 522 523 524 525 526
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
527
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
528 529 530

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
531
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
532 533

            # clone ops
Y
Yancey1989 已提交
534 535
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
536
                # clone sub_block of op
Y
Yancey1989 已提交
537
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
538 539 540 541

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

542
        # append lr decay ops to the child block if exists
543
        lr_ops = self._get_lr_ops()
544 545
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
546
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
547 548
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
549
            optimize_blocks.append(lr_decay_block)
550
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
551
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
552
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
553 554
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
555

T
typhoonzero 已提交
556
        # append op to the current block
Q
qiaolongfei 已提交
557
        grad_to_block_id = []
Q
qiaolongfei 已提交
558
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
559
        for idx, opt_op in enumerate(opt_op_on_pserver):
560
            per_opt_block = pserver_program.create_block(pre_block_idx)
561
            optimize_blocks.append(per_opt_block)
562
            # append grad merging ops before clip and weight decay
563
            # cases may like:
T
typhoonzero 已提交
564
            # L2Decay op -> clip op -> optimize
565 566 567 568 569 570 571
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
572
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
573 574
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
575
                if ufind.is_connected(op, opt_op) and op not in global_ops:
576
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
577
                                           merged_var, lr_ops)
T
typhoonzero 已提交
578

W
Wu Yi 已提交
579 580
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
581
        # append global ops
582
        if global_ops:
Q
qiaolongfei 已提交
583 584
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
585
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
586
            for glb_op in global_ops:
X
Xi Chen 已提交
587
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
588
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
589

590
        # process distributed lookup_table
Q
qiaolongfei 已提交
591
        prefetch_var_name_to_block_id = []
592 593
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
594
            table_opt_block = self._create_table_optimize_block(
595
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
596
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
597
            prefetch_var_name_to_block_id = self._create_prefetch_block(
598
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
599 600
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
601 602 603 604

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
605
            assert len(prefetch_var_name_to_block_id) > 0
606
        else:
Q
qiaolongfei 已提交
607
            assert len(prefetch_var_name_to_block_id) == 0
608

609
        attrs = {
610
            "optimize_blocks": optimize_blocks,
611 612 613
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
614
            "grad_to_block_id": grad_to_block_id,
615 616 617 618
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
619
            attrs['checkpint_block_id'] = checkpoint_block_id
620

T
typhoonzero 已提交
621 622 623 624 625
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
626
            attrs=attrs)
627

W
Wu Yi 已提交
628
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
629 630
        return pserver_program

631 632 633 634
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            startup_program=None):
T
typhoonzero 已提交
635 636 637 638
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
639 640 641 642 643

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
644 645
            startup_program (Program): if pass None, will use
                default_startup_program
646

Y
yi.wu 已提交
647 648
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
649 650
        """
        s_prog = Program()
651 652 653 654
        if not startup_program:
            orig_s_prog = default_startup_program()
        else:
            orig_s_prog = startup_program
X
Xin Pan 已提交
655
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
656 657 658 659 660 661 662 663 664 665 666
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
667
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
668
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
669
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
670 671 672 673
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
674
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
675 676
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
677 678 679 680 681 682 683 684 685 686
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
687 688

            if op_on_pserver:
689 690 691
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
692 693 694
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
695
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
696 697 698 699
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
700
                    attrs=op.all_attrs())
T
typhoonzero 已提交
701 702
        return s_prog

703 704
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
705 706 707 708 709 710 711 712 713
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
714
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
766
    def _init_splited_vars(self):
Y
yi.wu 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
790
        if self.config.slice_var_up:
Y
yi.wu 已提交
791 792
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
793 794 795
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
796
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
797 798
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
799 800 801
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
802 803 804 805
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
806 807
        assert (len(grad_blocks) == len(param_blocks))

808
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
809 810
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
811
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
812 813 814 815
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
816
        # dict(grad_splited_var -> param_splited_var)
817
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
818 819 820 821
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
822
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
823 824

        # create mapping of endpoint -> split var to create pserver side program
825
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
826 827 828 829 830 831 832 833 834
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

835
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
836 837
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
838
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
839 840 841 842 843 844 845 846 847
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
848 849 850 851 852 853 854 855 856

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

857
                    lookup_table_op_index = list(all_ops).index(op)
858 859 860
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
861
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
862
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
863 864 865 866 867 868
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
869
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
870 871 872 873
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
874 875

                    # insert split_ids_op
W
Wu Yi 已提交
876
                    program.global_block()._insert_op(
877
                        index=lookup_table_op_index,
878 879 880 881 882 883 884
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
885
                        outputs={"Out": prefetch_input_vars})
886 887

                    # insert prefetch_op
W
Wu Yi 已提交
888
                    program.global_block()._insert_op(
889
                        index=lookup_table_op_index + 1,
890
                        type="prefetch",
Q
qiaolongfei 已提交
891 892
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
893
                        attrs={
894
                            "epmap": pserver_endpoints,
895 896 897
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
898
                        })
899 900

                    # insert concat_op
W
Wu Yi 已提交
901
                    program.global_block()._insert_op(
902 903 904 905 906 907 908
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
909
                            'X': prefetch_output_vars
910
                        },
911 912 913 914 915
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
916
                        })
917 918

                    # delete lookup_table_op
919
                    delete_ops(program.global_block(), [op])
920 921 922
                    # break for loop
                    break

Y
Yancey1989 已提交
923
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
924
        # 2. add split_ids_op and send_op to send gradient to pservers
925 926
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
927
        table_grad_name = grad_var_name(self.table_name)
928 929 930 931
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
932
                program.global_block()._insert_op(
933 934 935 936 937
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
938
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
939
                program.global_block()._insert_op(
940
                    index=op_index + 2,
941
                    type="send",
942
                    inputs={'X': self.trainer_side_table_grad_list},
943
                    outputs={'Out': []},
Y
Yancey1989 已提交
944
                    attrs={
945
                        "sync_mode": True,
Y
Yancey1989 已提交
946
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
947 948 949 950 951
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
952
                    })
953 954 955 956 957 958
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
987 988

    def _create_table_optimize_block(self, pserver_index, pserver_program,
989
                                     pre_block_idx, grad_to_block_id):
990 991
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
992 993
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
994

T
tangwei12 已提交
995
        zero_dim = int(
T
tangwei12 已提交
996 997 998 999
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1000 1001
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1002
            shape=table_shape,
Y
Yancey1989 已提交
1003 1004 1005
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1006 1007
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1008
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1009
            self.origin_program.global_block().vars[grad_var_name(
1010
                self.table_name)])
1011 1012 1013 1014

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1015 1016
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1017
        ][0]
Q
qiaolongfei 已提交
1018
        table_opt_block = pserver_program.create_block(pre_block_idx)
1019

1020 1021 1022
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1023
            pserver_side_table_grad_list = [
1024 1025 1026 1027 1028 1029 1030 1031 1032
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1033
            # append sum op for pserver_side_table_grad_list
1034 1035
            table_opt_block.append_op(
                type="sum",
1036
                inputs={"X": pserver_side_table_grad_list},
1037 1038
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1039 1040
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1041
            origin_grad_name = grad_var.name
1042 1043
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1044 1045
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1046
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1047
            grad_var = pserver_program.global_block()._rename_var(
1048
                origin_grad_name, splited_grad_name)
1049 1050 1051 1052 1053 1054 1055 1056 1057

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1058
        # only support sgd now
1059 1060 1061 1062
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1063
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1064

1065 1066 1067
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1068 1069
        return table_opt_block

T
tangwei12 已提交
1070 1071 1072 1073 1074 1075
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1076
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1077
            name="kLookupTablePath",
T
tangwei12 已提交
1078 1079
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1080

T
tangwei12 已提交
1081
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1082
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1083 1084 1085 1086
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1087
            attrs={'file_path': "none"})
T
tangwei12 已提交
1088 1089 1090

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1091 1092 1093 1094 1095
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1096
        Create vars for each split.
T
typhoonzero 已提交
1097 1098
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1099 1100 1101 1102
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1103
        Returns:
1104
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1105
                from original var name to each var split.
T
typhoonzero 已提交
1106
        """
1107 1108

        # varname->[(block_id, current_block_size)]
1109
        block_map = collections.OrderedDict()
1110

1111
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1112 1113
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1114
            if varname not in block_map:
T
typhoonzero 已提交
1115
                block_map[varname] = []
1116
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1117

M
minqiyang 已提交
1118
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1119
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1120
            if len(splited) == 1:
1121
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1122 1123
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1124
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1125 1126 1127 1128 1129
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1130
                continue
T
typhoonzero 已提交
1131
            var_mapping[varname] = []
T
typhoonzero 已提交
1132 1133 1134 1135
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1136

T
typhoonzero 已提交
1137
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1138
                size = block[1]
M
minqiyang 已提交
1139
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1140 1141 1142
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1143
                new_var_name = ""
1144
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1145 1146 1147 1148 1149
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1150
                var = program.global_block().create_var(
T
typhoonzero 已提交
1151 1152
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1153
                    dtype=orig_var.dtype,
1154
                    type=orig_var.type,
T
typhoonzero 已提交
1155
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1156
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1157
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1158
        return var_mapping
T
done  
typhoonzero 已提交
1159

W
Wu Yi 已提交
1160
    def _create_splited_vars(self, source_var, block, tag):
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1171 1172 1173 1174 1175 1176
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1177
            persistable=persistable)
T
done  
typhoonzero 已提交
1178

Y
Yancey1989 已提交
1179
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1180 1181 1182 1183
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1184
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1194
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1204

T
typhoonzero 已提交
1205 1206 1207 1208
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1209
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1232 1233
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1234
        orig_var_name = ""
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1245
        else:
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1273
        else:
1274 1275 1276 1277 1278 1279
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1280
            for i in range(self.trainer_num):
1281 1282 1283 1284 1285 1286 1287
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1288 1289
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1290 1291 1292 1293 1294
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1295
        return merged_var
T
typhoonzero 已提交
1296

1297
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1298
                            grad_to_block_id, origin_program, merged_var):
1299
        program = optimize_block.program
T
typhoonzero 已提交
1300
        pserver_block = program.global_block()
1301
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1302

T
typhoonzero 已提交
1303 1304
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
W
Wu Yi 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313
        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1314
        for key in opt_op.input_names:
T
typhoonzero 已提交
1315 1316
            if key == "Grad":
                new_inputs[key] = merged_var
W
Wu Yi 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
            # For RMSProp optimizer
            elif key == "Moment" or key == "MeanSquare":
                param_block = _get_param_block(opt_op)
                if not param_block:
                    return
                moment_var = origin_program.global_block().vars[opt_op.input(
                    key)[0]]
                tmpvar = pserver_block.create_var(
                    name=moment_var.name,
                    persistable=moment_var.persistable,
                    dtype=moment_var.dtype,
                    # change to use same shape as param
                    # TODO(typhoonzero): didn't append .block in the var name,
                    # may affect checkpoint saving? Need to verify.
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
1333
            elif key == "Param":
W
Wu Yi 已提交
1334
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1335 1336
                if not param_block:
                    return
T
typhoonzero 已提交
1337
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1338
                    name=param_block.name,
T
typhoonzero 已提交
1339
                    persistable=True,
T
typhoonzero 已提交
1340 1341 1342
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1343
            elif key == "LearningRate":
1344
                # learning rate variable has already be created by non-optimize op,
1345
                # don't create it once again.
1346
                lr_varname = opt_op.input(key)[0]
1347
                if lr_varname in pserver_block.vars:
1348 1349 1350 1351 1352 1353 1354 1355 1356
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1357

T
typhoonzero 已提交
1358
        for key in opt_op.input_names:
1359
            new_shape = None
W
Wu Yi 已提交
1360
            if key in ["Param", "Grad", "LearningRate", "Moment", "MeanSquare"]:
T
typhoonzero 已提交
1361
                continue
1362
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1363 1364 1365 1366
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1367
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1368 1369 1370 1371 1372
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1373

1374
        # change output's ParamOut variable
1375 1376
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1377
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1378

1379
        optimize_block.append_op(
T
typhoonzero 已提交
1380 1381
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1382
            outputs=outputs,
G
gongweibao 已提交
1383
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1384

1385 1386
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1387
        for _, g in six.iteritems(var_dict):
1388 1389 1390 1391 1392 1393
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1394 1395 1396
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1397
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1398 1399 1400 1401
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1402
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1403 1404 1405

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1406
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1407 1408 1409 1410
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1411
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1412

Y
Yancey1989 已提交
1413
        return block.append_op(
G
gongweibao 已提交
1414
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1415 1416

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1417
        program = optimize_block.program
1418
        # Append the ops for parameters that do not need to be optimized/updated
1419 1420
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1421
        for key, varlist in six.iteritems(inputs):
1422 1423
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1424
            for var in varlist:
1425 1426 1427 1428 1429 1430
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1431
                elif var.name not in program.global_block().vars:
1432
                    program.global_block().create_var(
T
typhoonzero 已提交
1433 1434 1435 1436 1437
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1438 1439
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1440
        for key, varlist in six.iteritems(outputs):
1441 1442 1443
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1444 1445 1446 1447
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1448
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1449
                    program.global_block()._clone_variable(var)
1450

Y
Yancey1989 已提交
1451
        return optimize_block.append_op(
T
typhoonzero 已提交
1452
            type=opt_op.type,
T
typhoonzero 已提交
1453 1454
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1455
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1456

1457 1458 1459 1460
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1461 1462
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1463 1464 1465 1466 1467 1468
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1469 1470
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1471 1472 1473 1474 1475 1476
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1477
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1478 1479
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1480 1481 1482 1483 1484 1485 1486
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1487
        if op.input("Param")[0] in param_names:
1488 1489 1490
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1491
                param = op.input("Param")[0]
T
typhoonzero 已提交
1492
                if same_or_split_var(n, param) and n != param:
1493 1494 1495
                    return True
            return False

T
typhoonzero 已提交
1496
    def _get_input_map_from_op(self, varmap, op):
1497
        """Returns a dict from op input name to the vars in varmap."""
1498
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1510
        """Returns a dict from op output name to the vars in varmap."""
1511
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1521 1522 1523 1524 1525 1526

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1527
            if self._is_optimizer_op(op):
1528 1529 1530 1531
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1532
        block = self.origin_program.global_block()
1533 1534 1535 1536 1537
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1538

1539 1540 1541 1542 1543
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1544
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1545 1546 1547 1548 1549 1550
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1551 1552
                    # we only need to append op for once
                    break
1553
        return lr_ops
Y
Yancey1989 已提交
1554

W
Wu Yi 已提交
1555 1556 1557 1558 1559
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1560 1561
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1562 1563 1564
            return True
        return False

Y
Yancey1989 已提交
1565
    def _get_optimize_pass(self):
1566
        """
1567
        Get optimizer operators, parameters and gradients from origin_program
1568 1569 1570 1571
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1572 1573 1574
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1575
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1576
        for op in block.ops:
W
Wu Yi 已提交
1577
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1578
                opt_ops.append(op)
1579 1580 1581 1582 1583
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1584 1585
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1586 1587 1588 1589
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1590 1591 1592
            else:
                pass
        return opt_ops, params_grads