lamb_op.h 10.7 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <math.h>  // for sqrt in CPU and CUDA
#include <Eigen/Dense>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

namespace scatter = paddle::operators::math::scatter;

template <typename T>
struct LambMomentUpdateFunctor {
  T weight_decay_;
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* grad_;
  const T* param_;
  T* trust_ratio_div_;

  LambMomentUpdateFunctor(T weight_decay, T beta1, T beta2, T epsilon,
                          const T* beta1_pow, const T* beta2_pow, const T* mom1,
                          T* mom1_out, const T* mom2, T* mom2_out,
                          const T* grad, const T* param, T* trust_ratio_div)
      : weight_decay_(weight_decay),
        beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        grad_(grad),
        param_(param),
        trust_ratio_div_(trust_ratio_div) {}

  inline HOSTDEVICE void operator()(size_t i) const {
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    T p = param_[i];

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;

    T mom1_h = mom1 / (1 - beta1_pow);
    T mom2_h = mom2 / (1 - beta2_pow);

    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    trust_ratio_div_[i] = mom1_h / sqrt(mom2_h + epsilon_) + weight_decay_ * p;
  }
};

template <typename T>
struct SparseLambMomentUpdateFunctor {
  T weight_decay_;
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* grad_;
  const T* param_;
  T* trust_ratio_div_;

  const int64_t* rows_;
  int64_t row_numel_;
  int64_t row_count_;

  SparseLambMomentUpdateFunctor(T weight_decay, T beta1, T beta2, T epsilon,
                                const T* beta1_pow, const T* beta2_pow,
                                const T* mom1, T* mom1_out, const T* mom2,
                                T* mom2_out, const T* grad, const T* param,
                                T* trust_ratio_div, const int64_t* rows,
                                int64_t row_numel, int64_t row_count)
      : weight_decay_(weight_decay),
        beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        grad_(grad),
        param_(param),
        trust_ratio_div_(trust_ratio_div),
        rows_(rows),
        row_numel_(row_numel),
        row_count_(row_count) {}

  inline HOSTDEVICE void update(size_t i, T g) const {
    // The following code is same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    T p = param_[i];

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;

    T mom1_h = mom1 / (1 - beta1_pow);
    T mom2_h = mom2 / (1 - beta2_pow);

    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    trust_ratio_div_[i] = mom1_h / sqrt(mom2_h + epsilon_) + weight_decay_ * p;
  }

  inline HOSTDEVICE void operator()(size_t i) const {
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
    T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;
    update(i, g);
  }
};

template <typename T>
struct LambParamUpateFunctor {
  const T* lr_;
  const T* param_;
  const T* param_norm_;
  const T* trust_ratio_div_;
  const T* trust_ratio_div_norm_;
  T* param_out_;

  LambParamUpateFunctor(const T* lr, const T* param, const T* param_norm,
                        const T* trust_ratio_div, const T* trust_ratio_div_norm,
                        T* param_out)
      : lr_(lr),
        param_(param),
        param_norm_(param_norm),
        trust_ratio_div_(trust_ratio_div),
        trust_ratio_div_norm_(trust_ratio_div_norm),
        param_out_(param_out) {}

  inline HOSTDEVICE void operator()(size_t i) const {
    T lr = *lr_;
    T p_norm = *param_norm_;
    T tr_div_norm = *trust_ratio_div_norm_;

    lr *= p_norm / tr_div_norm;
    param_out_[i] = param_[i] - lr * trust_ratio_div_[i];
  }
};

template <typename DeviceContext, typename T>
class LambOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
                   ctx.Inputs("Param").front(),
                   framework::ToTypeName(param_var->Type()));

    using paddle::framework::LoDTensor;
    using paddle::operators::detail::Ref;

    T weight_decay = static_cast<T>(ctx.Attr<float>("weight_decay"));
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
    auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param.");
    auto* grad_var = ctx.InputVar("Grad");
    auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1.");
    auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2.");
    auto& lr =
        Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate.");

    auto& beta1_pow =
        Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow.");
    auto& beta2_pow =
        Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow.");

    auto& param_out =
        Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut.");
    auto& mom1_out =
        Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out.");
    auto& mom2_out =
        Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out.");

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    platform::ForRange<DeviceContext> for_range(dev_ctx, param.numel());
    framework::Tensor trust_ratio_div =
        ctx.AllocateTmpTensor<T, DeviceContext>(param.dims(), dev_ctx);

    // Update moments
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad.");

      LambMomentUpdateFunctor<T> moment_update_functor(
          weight_decay, beta1, beta2, epsilon, beta1_pow.template data<T>(),
          beta2_pow.template data<T>(), mom1.template data<T>(),
          mom1_out.template mutable_data<T>(ctx.GetPlace()),
          mom2.template data<T>(),
          mom2_out.template mutable_data<T>(ctx.GetPlace()),
          grad.template data<T>(), param.template data<T>(),
          trust_ratio_div.template data<T>());
      for_range(moment_update_functor);
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto& grad =
          Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad.");
      if (grad.rows().size() == 0) {
        VLOG(3) << "grad row size is 0!!";
        return;
      }

      std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

      framework::SelectedRows tmp_grad_merge;
      const framework::SelectedRows* grad_merge_ptr;
      if (is_strict_sorted) {
        grad_merge_ptr = &grad;
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
        scatter::MergeAdd<DeviceContext, T> merge_func;
        merge_func(dev_ctx, grad, &tmp_grad_merge, true);
        grad_merge_ptr = &tmp_grad_merge;
      }

      auto& grad_merge = *grad_merge_ptr;
      auto& grad_tensor = grad_merge.value();
      const T* grad_data = grad_tensor.template data<T>();
      const int64_t* rows = grad_merge.rows().Data(ctx.GetPlace());
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();

      SparseLambMomentUpdateFunctor<T> moment_update_functor(
          weight_decay, beta1, beta2, epsilon, beta1_pow.template data<T>(),
          beta2_pow.template data<T>(), mom1.template data<T>(),
          mom1_out.template mutable_data<T>(ctx.GetPlace()),
          mom2.template data<T>(),
          mom2_out.template mutable_data<T>(ctx.GetPlace()), grad_data,
          param.template data<T>(), trust_ratio_div.template data<T>(), rows,
          row_numel, grad_merge.rows().size());
      for_range(moment_update_functor);
    } else {
      PADDLE_THROW("Variable type not supported by lamb_op.");
    }

    // Update parameter
    framework::Tensor p_norm_t =
        ctx.AllocateTmpTensor<T, DeviceContext>({1}, dev_ctx);
    framework::Tensor trust_ratio_div_norm_t =
        ctx.AllocateTmpTensor<T, DeviceContext>({1}, dev_ctx);
    auto p_norm = framework::EigenScalar<T>::From(p_norm_t);
    auto trust_ratio_div_norm =
        framework::EigenScalar<T>::From(trust_ratio_div_norm_t);

    auto p = framework::EigenVector<T>::Flatten(param);
    auto t = framework::EigenVector<T>::Flatten(trust_ratio_div);

    auto* place = dev_ctx.eigen_device();
    p_norm.device(*place) = p.square().sum().sqrt();
    trust_ratio_div_norm.device(*place) = t.square().sum().sqrt();

    LambParamUpateFunctor<T> param_update_functor(
        lr.template data<T>(), param.template data<T>(),
        p_norm_t.template data<T>(), trust_ratio_div.template data<T>(),
        trust_ratio_div_norm_t.template data<T>(),
        param_out.template mutable_data<T>(ctx.GetPlace()));
    for_range(param_update_functor);
  }
};

}  // namespace operators
}  // namespace paddle