utils.py 49.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import atexit
16
import builtins
17
import copy
18
import functools
19
import importlib.util
20
import inspect
21
import os
22
import shutil
23
import sys
24
import tempfile
25
import textwrap
26
import types
27 28 29 30
import warnings
from importlib.machinery import SourceFileLoader

import astor
31
import numpy as np
32

33
import paddle
34
from paddle import fluid  # noqa: F401
35
from paddle.fluid import core, unique_name
36
from paddle.fluid.data_feeder import convert_dtype
37
from paddle.fluid.layer_helper import LayerHelper
38
from paddle.utils import gast
39

40 41 42 43 44 45 46 47 48 49 50 51 52
from .ast_utils import ast_to_source_code
from .static_analysis import StaticAnalysisVisitor
from .utils_helper import DYGRAPH_MODULE_PREFIX  # noqa: F401
from .utils_helper import DYGRAPH_TO_STATIC_MODULE_PREFIX  # noqa: F401
from .utils_helper import PADDLE_MODULE_PREFIX  # noqa: F401
from .utils_helper import NodeVarType  # noqa: F401
from .utils_helper import _is_api_in_module_helper  # noqa: F401
from .utils_helper import index_in_list  # noqa: F401
from .utils_helper import is_api_in_module  # noqa: F401
from .utils_helper import is_dygraph_api  # noqa: F401
from .utils_helper import is_numpy_api  # noqa: F401;
from .utils_helper import is_paddle_api  # noqa: F401

53 54
__all__ = []

55 56
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
57 58
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
59
ALREADY_D2S = '__already_d2s'
60
ARGS_NAME = '__args'
61 62
# NOTE(liym27): Please use `getattr(ast_node, ORIGI_INFO)` instead of . operation to get the original information of ast node.
ORIGI_INFO = "Original information of source code for ast node."
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
DEL_TEMP_DIR = True  # A flag to avoid atexit.register more than once
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
FOR_ITER_TARGET_PREFIX = '__for_loop_iter_target'
FOR_ITER_ITERATOR_PREFIX = '__for_loop_iter_iterator'
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'

RE_PYNAME = '[a-zA-Z0-9_]+'
RE_PYMODULE = r'[a-zA-Z0-9_]+\.'

# Assign not support float64, use float32 value as magic number.
RETURN_NO_VALUE_VAR_NAME = "__no_value_return_var"
RETURN_NO_VALUE_MAGIC_NUM = 1.77113e27

TRUE_FUNC_PREFIX = 'true_fn'
FALSE_FUNC_PREFIX = 'false_fn'

WHILE_CONDITION_PREFIX = 'while_condition'
WHILE_BODY_PREFIX = 'while_body'
FOR_CONDITION_PREFIX = 'for_loop_condition'
FOR_BODY_PREFIX = 'for_loop_body'

89 90 91 92 93 94 95
NO_SHAPE_VAR_TYPE = [
    core.VarDesc.VarType.READER,
    core.VarDesc.VarType.STEP_SCOPES,
    core.VarDesc.VarType.FEED_MINIBATCH,
    core.VarDesc.VarType.FETCH_LIST,
]

96 97 98

class BaseNodeVisitor(gast.NodeVisitor):
    """
99
    Implement customized NodeVisitor inherited from gast.NodeVisitor.
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


118 119 120 121 122 123 124 125 126 127 128
dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}


129 130 131 132 133 134 135
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

136
     Note:
137 138 139 140 141 142 143 144 145 146
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
147
           size. For example, it is useful to set changeable batch size as "None"
148 149 150 151 152 153 154 155 156 157 158 159
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
160
    for i in range(len(shape)):
161 162 163
        if shape[i] is None:
            shape[i] = -1

164 165 166 167 168 169 170 171 172 173
    return helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        stop_gradient=True,
        lod_level=lod_level,
        is_data=True,
        need_check_feed=False,
    )
174

175

176
def create_undefined_variable():
177 178 179
    var = data_layer_not_check(
        unique_name.generate("undefined_var"), [1], "float64"
    )
180
    var.stop_gradient = False
181 182 183 184
    # the variable is created in block(0), we append assign in block(0) either.
    helper = LayerHelper('create_undefined_variable', **locals())
    saved_block_ids = helper.main_program.current_block_idx
    helper.main_program.current_block_idx = 0
185
    paddle.assign(RETURN_NO_VALUE_MAGIC_NUM, var)
186
    helper.main_program.current_block_idx = saved_block_ids
187
    return var
188 189


190 191 192 193 194 195
class UndefinedVar:
    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
196 197
            "local variable '{}' should be created before using it."
        )
198 199


200 201 202 203 204
class Dygraph2StaticException(Exception):
    def __init__(self, message):
        super().__init__(message)


205 206 207 208 209 210 211
def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


212 213 214 215
def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
216
    fullargspec = inspect.getfullargspec(function)
217 218 219 220 221 222 223 224 225
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
226
        default_kwarg_names = arg_names[-len(default_values) :]
227 228 229 230 231
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
232 233 234 235
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
236
    fullargspec = inspect.getfullargspec(function)
W
WeiXin 已提交
237 238 239 240
    varargs = fullargspec.varargs
    return varargs


241 242 243 244 245 246 247 248
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

249
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
250
    """
251
    if isinstance(x, (tuple, list, set)):
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

269

270 271 272
# NOTE(Aurelius84): Consider the following paddle inner API as common case to
# apply @to_static code transformation as usual. Because they contains
# user-defined layer, like paddle.distributed.auto_parallel.helper.ProxyLayer.
273
AS_NOT_INNER_FUNC_LIST = {"paddle.nn.layer.container.Sequential"}
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295


def as_not_paddle_func(path):
    """
    Append API or class as ignored case for is_paddle_func, and they
    will be retured False while calling is_paddle_func(func).
    """
    global INNER_FUNC_WHITE_LIST
    AS_NOT_INNER_FUNC_LIST.add(path)


def is_paddle_func(func, ignore_white_list=True):
    """
    Return True if function is defined in Paddle module.
    Skip to check APIs in white list if specifying ignore_white_list as True.
    """

    def in_white_list(module, func_name):
        if func_name is None:
            return False
        return (module.__name__ + '.' + func_name) in AS_NOT_INNER_FUNC_LIST

296 297 298 299
    try:
        if isinstance(func, functools.partial):
            func = func.func

300
        func_name = getattr(func, '__name__', None)
301 302
        if inspect.ismethod(func):
            func_name = func.__self__.__class__.__name__
303
            func = func.__func__
304 305
        elif hasattr(func, '__class__'):  # for nn.Sequential
            func_name = func.__class__.__name__
306 307

        m = inspect.getmodule(func)
308 309 310
        flag = m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
        if ignore_white_list:
            flag = flag and not in_white_list(m, func_name)
311

312
        return flag
313 314
    except Exception:
        return False
315 316


317 318
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
319
    func_src = astor.to_source(gast.gast_to_ast(node.func))
320

321
    full_args = eval(f"inspect.getfullargspec({func_src})")
322 323 324 325 326 327 328 329 330 331
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
332 333
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
334 335
            "to static graph at present.".format(dygraph_class)
        )
336 337 338 339 340 341 342 343 344 345


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
346 347 348 349
            gast.keyword(
                arg="num_flatten_dims", value=gast.Constant(value=-1, kind=None)
            )
        )
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

368 369 370 371 372 373 374 375 376 377 378
    node.func = gast.Attribute(
        attr=static_api,
        ctx=gast.Load(),
        value=gast.Attribute(
            attr='layers',
            ctx=gast.Load(),
            value=gast.Name(
                ctx=gast.Load(), id='fluid', annotation=None, type_comment=None
            ),
        ),
    )
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

399
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
400

401
    if method_name == "__init__" or eval(
402
        f"issubclass({class_src}, paddle.nn.Layer)"
403
    ):
404
        full_args = eval(f"inspect.getfullargspec({class_src}.{method_name})")
405 406 407 408 409 410 411 412 413 414 415
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
416 417 418


def create_api_shape_node(tensor_shape_node):
419 420 421
    assert isinstance(
        tensor_shape_node, (gast.Name, gast.Attribute, gast.Subscript)
    )
422 423 424

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
425
            func=gast.parse('paddle.shape').body[0].value,
426
            args=[tensor_shape_node],
427 428
            keywords=[],
        )
429
        return api_shape_node
430 431 432

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
433
            func=gast.parse('paddle.shape').body[0].value,
434
            args=[tensor_shape_node.value],
435 436
            keywords=[],
        )
437 438 439 440 441 442
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
443 444


445
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
446
    return gast.parse(
447
        f'{name} = paddle.full({str(shape)}, "{str(value)}", {dtype})'
448
    )
449 450 451 452


def get_attribute_full_name(node):
    assert isinstance(
453 454
        node, gast.Attribute
    ), "Input non-Attribute node to get attribute full name"
455 456 457
    return astor.to_source(gast.gast_to_ast(node)).strip()


458
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
459
    """
460 461 462 463 464 465 466
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
467
    """
468
    if isinstance(name_ids, str):
469 470
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
471
        raise TypeError(
472 473 474
            'name_ids must be list or tuple or set, but received %s'
            % type(type(name_ids))
        )
475 476 477

    def create_node_for_name(name):
        if '.' not in name:
478 479 480
            return gast.Name(
                id=name, ctx=ctx, annotation=None, type_comment=None
            )
481 482 483
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
484
    if len(gast_names) == 1 and not gen_tuple_if_single:
485 486 487 488 489 490 491 492 493 494 495 496 497
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
498 499
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
500 501
    else:
        nodes.append(gast.Return(value=None))
502 503 504 505 506 507 508 509
    func_def_node = gast.FunctionDef(
        name=name,
        args=input_args,
        body=nodes,
        decorator_list=[],
        returns=None,
        type_comment=None,
    )
510 511 512
    return func_def_node


513 514 515 516 517 518 519 520 521
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


522 523 524 525
def get_temp_dir():
    """
    Return @to_static temp directory.
    """
526
    dir_name = f"paddle/to_static_tmp/{os.getpid()}"
527 528 529 530 531 532 533 534 535 536 537
    temp_dir = os.path.join(os.path.expanduser('~/.cache'), dir_name)
    is_windows = sys.platform.startswith('win')
    if is_windows:
        temp_dir = os.path.normpath(temp_dir)

    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)

    return temp_dir


538
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
539 540
    """
    Transform modified AST of decorated function into python callable object.
541 542
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
543
    """
544

545 546 547 548 549 550 551 552 553 554 555 556
    def remove_if_exit(dir_path):
        if os.path.exists(dir_path):
            shutil.rmtree(dir_path)

    def func_prefix(func):
        pre_fix = func.__name__
        if hasattr(func, '__self__'):
            try:
                pre_fix = func.__self__.__class__.__name__ + '_' + func.__name__
            except:
                pass
        return pre_fix
557

558
    source = ast_to_source_code(ast_root)
559
    source = _inject_import_statements() + source
560
    temp_dir = get_temp_dir()
561 562 563 564 565 566 567 568
    f = tempfile.NamedTemporaryFile(
        mode='w',
        prefix=func_prefix(dyfunc),
        suffix='.py',
        delete=False,
        dir=temp_dir,
        encoding='utf-8',
    )
569 570 571 572
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

573 574 575 576 577
    global DEL_TEMP_DIR
    if delete_on_exit and DEL_TEMP_DIR:
        # Clear temporary files in TEMP_DIR while exitting Python process
        atexit.register(remove_if_exit, dir_path=temp_dir)
        DEL_TEMP_DIR = False
578

579
    func_name = dyfunc.__name__
580 581 582 583
    loader = SourceFileLoader(module_name, f.name)
    spec = importlib.util.spec_from_loader(loader.name, loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
W
WeiXin 已提交
584 585 586
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
587
        callable_func = module.__i_m_p_l__
W
WeiXin 已提交
588 589 590 591
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
592
        raise ValueError(
593 594 595
            'Function: %s doesn\'t exist in the Module transformed from AST.'
            % func_name
        )
596 597 598 599 600 601 602 603
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


604 605
def _inject_import_statements():
    import_statements = [
606 607 608 609 610 611 612 613
        "import paddle",
        "from paddle import Tensor",
        "import paddle.fluid as fluid",
        "import paddle.jit.dy2static as _jst",
        "from typing import *",
        "import numpy as np",
        "import warnings",
        "warnings.filterwarnings('ignore', category=DeprecationWarning)",
614 615 616 617
    ]
    return '\n'.join(import_statements) + '\n'


618 619 620 621 622
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
623

624
    for k, v in src_globals.items():
625 626 627
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
628 629


630 631 632 633
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
634 635
    if isinstance(function, functools.partial):
        function = function.func
636 637
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
638 639 640 641
            "The type of 'function' should be a function or method, but received {}.".format(
                type(function).__name__
            )
        )
642
    source_code_list, _ = inspect.getsourcelines(function)
643
    # Replace comments with blank lines so that error messages are not misplaced
644
    source_code_list = [
645 646
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
647 648
    ]
    source_code = ''.join(source_code_list)
649 650 651 652 653 654
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


L
liym27 已提交
655 656 657 658
def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
659 660 661 662 663 664 665 666 667 668 669
    is_compare_node = isinstance(
        node,
        (
            gast.Compare,
            gast.BoolOp,
            gast.UnaryOp,
            gast.For,
            gast.If,
            gast.While,
        ),
    )
L
liym27 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
685 686 687
            if (isinstance(child, gast.Constant) and child.value is None) or (
                isinstance(child, gast.Name) and child.id == 'None'
            ):
L
liym27 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
705
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
706
        6. calls `range` function in `for` statement and the argument of range is Tensor.
707 708
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

722 723 724
    def __init__(
        self, ast_node, static_analysis_visitor=None, node_var_type_map=None
    ):
L
liym27 已提交
725 726 727
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
728 729
            ast_node
        )
L
liym27 已提交
730 731 732 733
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
734 735
        self.node_to_wrapper_map = (
            self.static_analysis_visitor.get_node_to_wrapper_map()
L
liym27 已提交
736 737 738 739 740 741 742 743
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
744 745 746 747 748 749 750 751
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
752 753 754 755 756 757 758 759 760
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
761 762 763
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
764 765 766 767
                if (
                    node.iter.func.id == "range"
                    or node.iter.func.id == "enumerate"
                ):
768 769 770 771 772 773 774 775 776 777
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
778 779
            else:
                return
780 781 782
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
783
        else:
L
liym27 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
822
            self.visit(child)
L
liym27 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
868
            if name_id and isinstance(name_id, str):
L
liym27 已提交
869
                var_type = self.node_var_type_map.get(name_id, None)
870
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
871 872
                    return True
        # if not found, look up the node_to_wrapper_map by node.
873
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
874
        if wrapper_node is not None:
875
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
876 877 878 879 880 881
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
882 883


884 885 886 887 888 889 890 891 892 893
# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
894
    while _is_wrapped(unwrapped_f):
895 896 897
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
898 899


C
Chen Weihang 已提交
900
def input_specs_compatible(src_input_specs, desired_input_specs):
901 902 903 904
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
905 906 907 908
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
909 910
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
911 912
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
913
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
914 915 916 917
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
918 919 920
        for (src_spec, desired_spec) in zip(
            src_input_specs, desired_input_specs
        ):
921
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
922 923
                desired_spec, paddle.static.InputSpec
            ):
924 925 926 927
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
928 929
                    return False

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
957 958

    return True
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

981

982 983
class NameScope:
    def __init__(self):
984
        """
985 986
        A NameScope is a object which manager all the variable names.
        only FunctionDef and Controlflow node will have a namescope property.
987

988
        type can be "function" and "controlflow"
989

990
        we don't analyze the read only variable because they don't affect the analysis.
991 992 993 994 995 996
        """
        self.globals = set()
        self.nonlocals = set()
        self.args = set()
        self.father = None  # point to the nearest function name scope.
        self.w_vars = set()  # all qualified + normal names been stored
997
        self.created = set()  # useful for control flow compatibility
998
        # only valid in control_flow nodes
999 1000
        # may be remove later.
        self.push_pop_vars = set()  # we call push and pop in the vars
1001 1002 1003 1004 1005

    def set_father(self, father):
        self.father = father

    def existed_vars(self):
1006 1007
        """vars existing in current scope.
        they must not contain qualified names.
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
        """
        local_vars = self.w_vars - self.globals - self.nonlocals - self.args
        return set(filter(lambda x: '.' not in x, local_vars))

    def created_vars(self):
        return self.created

    def modified_vars(self):
        # may be globals / non-locals / args / qualified names and created_vars
        return self.w_vars

1019
    def variadic_length_vars(self):
1020
        """
1021
        At present, we do not support global append, such as
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
        import numpy as np
        a = []
        def func():
            a.append() # global names `a`, we will raise a warning.
            p.append(a, 1) # global names `np`, we will raise a warning.
        """
        non_global_push_pop_names = []
        for var in self.push_pop_vars:
            if self._is_simple_name(var) and self.is_global_var(var):
                warnings.warn(
                    f"Find variable `{var}` defined in global scope"
                    f" and call `{var}.append() or {var}.pop()`"
                    f", which will be ignored and never be transfered into"
1036 1037
                    f" tensor array."
                )
1038 1039 1040
            else:
                non_global_push_pop_names.append(var)
        return set(non_global_push_pop_names)
1041

1042 1043
    def control_flow_vars(self):
        valid_names = self.w_vars
1044
        tmp = (self.father.global_vars & valid_names,)
1045 1046
        return {"global": tmp, "nonlocal": self.w_vars - tmp}

1047
    def _is_simple_name(self, name):
1048 1049
        if '.' in name or '[' in name:
            return False
1050 1051 1052
        return True

    def is_global_var(self, name):
1053
        """
1054
        Return whether the name is a var created in global scope.
1055
        Search from bottom to top. If it is not created or modified,
1056 1057 1058 1059
        it means global vars; otherwise, it means local vars.
        Only valid after FunctionNameLivenessAnalysis visitor.
        """
        assert self._is_simple_name(
1060 1061
            name
        ), "is_global_var accept a simple name, but get `{name}`."
1062 1063
        ancestor = self
        while ancestor is not None:
1064 1065 1066 1067
            if name in ancestor.globals:
                return True
            if name in (ancestor.nonlocals | ancestor.w_vars):
                return False
1068 1069 1070 1071 1072
            ancestor = ancestor.father
        return True

    def is_local_var(self, name):
        return not self.is_global_var(name)
1073 1074 1075 1076 1077 1078

    def merge_from(self, name_scope):
        self.globals |= name_scope.globals
        self.nonlocals |= name_scope.nonlocals
        self.args |= name_scope.args
        self.w_vars |= name_scope.w_vars
1079
        self.push_pop_vars |= name_scope.push_pop_vars
1080 1081 1082


class FunctionNameLivenessAnalysis(gast.NodeVisitor):
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    """analyze the liveness of a function.

    every variables stored in this scope will be collected,
    in addition with global/nonlocal information and
    push_pop information.

    1. global variable is stored in node.var_globals.
    2. nonlocal variable is stored in node.var_nonlocals.
    3. arguments is stored in node.var_args.
    4. if a variable's push and pop attribute is called,
       it will be collected in push_pop_vars. They are
       used for transformation to tensor_array.
       NOTE: push_pop_vars **may not** in w_vars.
       a.push(0) don't modify the variable a, but the content
       of a.

    For example:

    def func(*args, **kargs):
        a = 12
        global i,j
        nonlocal x,y
        print(a)
        i = k
        b = []
        c = [1,2,3]
        for m in range(10):
            q = 12
            b.push(1)
            c.pop()

    After this visitor we have:
    # node is the FunctionDef node with name: "func"
    node.pd_scope = NameScope(
        globals = ['i', 'j'],
        nonlocals = ['x', 'y'],
        args = ['args', 'kargs'],
        wr_vars = ['a', 'i', 'q', 'm', 'c', 'b']
        push_pop_vars = ['b', 'c']
    )
1123 1124 1125 1126 1127 1128 1129 1130
    """

    def __init__(self, root_node):
        self.scope_node_stack = []  # controlflow, functiondef node
        self.visit(root_node)

    def _reset_name_scope(self, node):
        # always reset the node as empty namescope.
1131
        node.pd_scope = NameScope()
1132 1133 1134

    def _get_name_scope(self, node):
        if not hasattr(node, "pd_scope"):
1135
            node.pd_scope = NameScope()
1136 1137 1138 1139 1140 1141
        return node.pd_scope

    def _current_name_scope(self):
        return self._get_name_scope(self.scope_node_stack[-1])

    def _father_name_scope(self):
1142 1143
        if len(self.scope_node_stack) == 1:
            return None
1144 1145 1146
        return self._get_name_scope(self.scope_node_stack[-2])

    def _nearest_function_scope(self):
1147 1148
        if len(self.scope_node_stack) == 1:
            return None
1149 1150 1151 1152
        for node in self.scope_node_stack[-2::-1]:
            if isinstance(node, gast.FunctionDef):
                return self._get_name_scope(node)

1153
    def visit_ListComp(self, node):
1154 1155 1156
        """[ i for i in range(10) ]
        In this case, `i` will not created in FunctionScope.
        We don't collect `i` by not calling generic_visit.
1157 1158 1159 1160
        """
        pass

    def visit_DictComp(self, node):
1161
        """the same as ListComp."""
1162 1163
        pass

1164 1165 1166 1167 1168 1169 1170 1171 1172
    def visit_Name(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            self._current_name_scope().w_vars.add(node.id)

    def visit_FunctionDef(self, node):
        def pre_func():
            self._current_name_scope().args |= set(
1173 1174
                self._get_argument_names(node)
            )
1175 1176

        def post_func():
1177 1178
            """NOTE: why we need merge w_vars and push_pop_vars here ?
            because we do ifelse_transformer after loop_transformer. Loops will changed into functioons. but we know this function will be called in if. so we add w_vars to father function scope.
1179 1180
            """
            control_flow_function_def = [
1181 1182 1183 1184 1185 1186
                WHILE_BODY_PREFIX,
                WHILE_BODY_PREFIX,
                FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX,
                TRUE_FUNC_PREFIX,
                FALSE_FUNC_PREFIX,
1187 1188 1189 1190
            ]

            def is_control_flow_def_node():
                for prefix in control_flow_function_def:
1191 1192
                    if node.name.startswith(prefix):
                        return True
1193 1194 1195
                return False

            if self._father_name_scope() and is_control_flow_def_node():
1196 1197 1198 1199 1200 1201
                self._father_name_scope().w_vars |= (
                    self._current_name_scope().w_vars
                )
                self._father_name_scope().push_pop_vars |= (
                    self._current_name_scope().push_pop_vars
                )
1202 1203 1204 1205

        self._visit_scope_node(node, pre_func, post_func)

    def _visit_scope_node(self, node, pre_func, post_func):
1206 1207
        """scope node main visit logic.
        pre_func and post_func is callbacks
1208 1209 1210
        """
        self._reset_name_scope(node)
        self.scope_node_stack.append(node)
1211
        self._current_name_scope().set_father(self._nearest_function_scope())
1212 1213
        if pre_func:
            pre_func()
1214
        self.generic_visit(node)
1215 1216
        if post_func:
            post_func()
1217 1218 1219 1220 1221
        self.scope_node_stack.pop()

    def _visit_controlflow_node(self, node):
        def post_func():
            self._father_name_scope().merge_from(self._current_name_scope())
1222
            self._nearest_function_scope().merge_from(
1223 1224 1225 1226 1227 1228
                self._current_name_scope()
            )
            self._current_name_scope().created = (
                self._nearest_function_scope().existed_vars()
                - node.before_created
            )
1229
            # gather created vars into father and used in CreateUndefinedVarTransform
1230 1231 1232
            self._nearest_function_scope().created |= (
                self._current_name_scope().created
            )
1233 1234

        def pre_func():
1235
            node.before_created = self._nearest_function_scope().existed_vars()
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

        self._visit_scope_node(node, pre_func, post_func)

    def visit_For(self, node):
        self._visit_controlflow_node(node)

    def visit_While(self, node):
        self._visit_controlflow_node(node)

    def visit_If(self, node):
        self._visit_controlflow_node(node)

    def visit_Global(self, node):
        self._current_name_scope().globals |= set(node.names)

    def visit_Nonlocal(self, node):
        self._current_name_scope().nonlocals |= set(node.names)

    def visit_Attribute(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            name = ast_to_source_code(node).strip()
            self._current_name_scope().w_vars.add(name)

1261 1262 1263 1264 1265 1266 1267 1268 1269
    def visit_Subscript(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            while isinstance(node.value, gast.Subscript):
                node = node.value
            if isinstance(node.value, gast.Name):
                self._current_name_scope().w_vars.add(node.value.id)

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    def visit_Call(self, node):
        self.generic_visit(node)
        if not isinstance(node.func, gast.Attribute):
            return
        variadic_length_method = ['append', 'pop']
        if node.func.attr not in variadic_length_method:
            return
        # we don't treat push and pop as a write operator. such as a[i]=10 is not modify a.
        name = ast_to_source_code(node.func.value).strip()
        self._current_name_scope().push_pop_vars.add(name)

1281
    def _get_argument_names(self, node):
1282 1283 1284
        """get all arguments name in the functiondef node.
        this node is local to the function and shouldn't
        be created.
1285 1286
        """
        assert isinstance(
1287 1288
            node, gast.FunctionDef
        ), "Input node is not function define node"
1289
        names = list(node.args.args)
1290 1291 1292 1293 1294 1295
        names.append(node.args.vararg)
        names.append(node.args.kwarg)
        names = [i.id for i in names if i is not None]
        return names


1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
1309 1310 1311
        """.format(
            func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX)
        )
1312 1313 1314
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1315
    node = create_nonlocal_stmt_nodes(names)
1316 1317
    if not names:
        return empty_node()
1318
    if node == []:
1319 1320
        nonlocal_vars = "\n"
    else:
1321
        nonlocal_vars = ast_to_source_code(node[0])
1322 1323
    template = """
    def {func_name}():
1324
        {nonlocal_vars}
1325
        return {vars},
1326 1327 1328
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
1329
        nonlocal_vars=nonlocal_vars,
1330 1331
        vars=",".join(names),
    )
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
1348 1349 1350
        """.format(
            func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX), args=ARGS_NAME
        )
1351 1352 1353
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1354
    node = create_nonlocal_stmt_nodes(names)
1355 1356
    if not names:
        return empty_node()
1357
    if node == []:
1358 1359
        nonlocal_vars = "\n"
    else:
1360
        nonlocal_vars = ast_to_source_code(node[0])
1361 1362
    template = """
    def {func_name}({args}):
1363
        {nonlocal_vars}
1364
        {vars}, = {args}
1365 1366 1367 1368
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
1369
        nonlocal_vars=nonlocal_vars,
1370 1371
        vars=",".join(names),
    )
1372 1373 1374
    return gast.parse(textwrap.dedent(func_def)).body[0]


1375
def create_nonlocal_stmt_nodes(names):
1376 1377 1378
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
1379
    mapped = list(filter(lambda n: '[' not in n, mapped))
1380
    names = sorted(
1381 1382
        mapped, key=mapped.index
    )  # to keep the order, we can't use set() to unique
1383 1384
    if not names:
        return []
1385
    func_code = "nonlocal {}".format(','.join(names))
1386
    return [gast.parse(func_code).body[0]]
1387 1388 1389


class GetterSetterHelper:
1390 1391 1392 1393
    """we have two classes of names in setter and getter function:
    w_vars(loop_vars) + push_pop_vars
    To simplify the setter logic in convert_while and convert_cond,
    we extract the helper class here.
1394 1395 1396
    """

    def __init__(self, getter_func, setter_func, *name_lists):
1397 1398
        name_lists = ([] if x is None else x for x in name_lists)
        name_sets = (set(x) for x in name_lists)
1399 1400 1401
        self._union = list(
            functools.reduce(lambda x, y: x | y, name_sets, set())
        )
1402 1403 1404 1405 1406 1407 1408 1409 1410
        self._union.sort()
        self.getter = getter_func
        self.setter = setter_func
        self.name2id = {name: idx for idx, name in enumerate(self._union)}

    def union(self):
        return self._union

    def get(self, names):
1411 1412
        if names is None:
            names = []
1413
        vars = self.getter()
1414
        if vars is None:
1415
            return ()
1416
        for n in names:
1417 1418 1419 1420 1421
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1422
        return tuple(vars[self.name2id[n]] for n in names)
1423 1424

    def set(self, names, values):
1425 1426 1427 1428
        if names is None:
            names = []
        if values is None:
            values = []
1429
        vars = self.getter()
1430 1431
        if vars is None:
            return
1432
        for n in names:
1433 1434 1435 1436 1437
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1438
        vars = list(vars)
1439
        indices = [self.name2id[n] for n in names]
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
        for i, v in zip(indices, values):
            vars[i] = v
        self.setter(vars)


def create_name_str(name_ids):
    """
    Return "('x', 'y')" for [x, y]
    """
    if not name_ids:
        return 'None'

1452
    names_str = ["'%s'" % (name.replace("'", "\\'")) for name in name_ids]
1453
    return "(%s, )" % ','.join(names_str)
1454 1455 1456 1457 1458 1459 1460


def _param_grad_names(program_desc, params):
    """
    Parse PARAM@GARD name from original train and infer program.
    """
    names = []
1461
    # NOTE: `names` and `params` must be in the same order so that
1462 1463
    # the param grad name can be set correctly in the run_program.
    for param in params:
1464 1465 1466 1467 1468 1469 1470 1471 1472
        candidate = []
        suffix = param.name + '@GRAD'
        for var in program_desc.block(0).all_vars():
            var_name = var.name()
            if var_name.endswith(suffix):
                prefix_count = var_name.count('grad/')
                if 'grad/' * prefix_count + suffix == var_name:
                    candidate.append(var_name)

1473 1474 1475
        if candidate:
            names.append(max(candidate, key=lambda name: name.count('grad/')))
        else:
1476
            names.append(suffix)
1477 1478 1479 1480 1481 1482 1483 1484 1485
    return names


def _out_grad_names(program_desc, fwd_end_op_index, out_size):
    """
    Parse Out@GARD name from original train and infer program.
    """
    names = []
    for i in range(
1486 1487
        fwd_end_op_index,
        min(fwd_end_op_index + out_size, program_desc.block(0).op_size()),
1488 1489
    ):
        op = program_desc.block(0).op(i)
1490 1491 1492 1493 1494 1495
        # If prim forward op, fill_any_like will be decomposite as fill_constant.
        if core._is_fwd_prim_enabled():
            target = ('fill_any_like', 'fill_constant')
        else:
            target = 'fill_any_like'
        if op.type() in target:
1496 1497 1498
            var_name = op.output('Out')[0]
            names.append(var_name)
    return names
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520


def prim_or_cinn_is_enabled(build_strategy):
    if build_strategy is not None and build_strategy.build_cinn_pass:
        return True

    if core._is_bwd_prim_enabled() or core._is_fwd_prim_enabled():
        return True

    env_flags = [
        'FLAGS_prim_forward',
        'FLAGS_prim_backward',
        'FLAGS_prim_all',
        'FLAGS_use_cinn',
    ]
    for flag in env_flags:
        value = os.getenv(flag)
        if value is None:
            continue
        elif value.lower() in ['true', '1']:
            return True
    return False
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536


def is_builtin(func, name=None):
    """predict whether a function is a builtin function with name={name}.
    if name == None, then any builtin function will return True
    """

    def name_judge():
        return name is None or func.__name__ == name

    if isinstance(func, types.BuiltinFunctionType) and name_judge():
        return True
    elif func in builtins.__dict__.values() and name_judge():
        return True
    else:
        return False