notest_understand_sentiment.py 14.0 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
from paddle.fluid.layers.device import get_places
16
import unittest
17
import paddle.fluid as fluid
18
import paddle
19
import contextlib
20
import math
21
import numpy as np
22
import sys
武毅 已提交
23
import os
24 25 26 27


def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
                    hid_dim=32):
28 29
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=3,
        act="tanh",
        pool_type="sqrt")
    conv_4 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=4,
        act="tanh",
        pool_type="sqrt")
    prediction = fluid.layers.fc(input=[conv_3, conv_4],
                                 size=class_dim,
                                 act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
46
    avg_cost = fluid.layers.mean(cost)
47
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
48
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
49 50


Y
Yu Yang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def dyn_rnn_lstm(data, label, input_dim, class_dim=2, emb_dim=32,
                 lstm_size=128):
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
    sentence = fluid.layers.fc(input=emb, size=lstm_size, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
        prev_cell = rnn.memory(value=0.0, shape=[lstm_size])

        def gate_common(ipt, hidden, size):
            gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
            gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
            return gate0 + gate1

        forget_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        input_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                        lstm_size))
        output_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        cell_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                       lstm_size))

        cell = forget_gate * prev_cell + input_gate * cell_gate
        hidden = output_gate * fluid.layers.tanh(x=cell)
        rnn.update_memory(prev_cell, cell)
        rnn.update_memory(prev_hidden, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_last_step(rnn())
    prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
86
    avg_cost = fluid.layers.mean(cost)
Y
Yu Yang 已提交
87 88 89 90
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return avg_cost, accuracy, prediction


Y
Yu Yang 已提交
91 92 93
def stacked_lstm_net(data,
                     label,
                     input_dim,
Q
QI JUN 已提交
94 95 96 97 98 99
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    assert stacked_num % 2 == 1

100 101
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
Q
QI JUN 已提交
102 103 104
    # add bias attr

    # TODO(qijun) linear act
105 106
    fc1 = fluid.layers.fc(input=emb, size=hid_dim)
    lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
Q
QI JUN 已提交
107 108 109 110

    inputs = [fc1, lstm1]

    for i in range(2, stacked_num + 1):
111 112
        fc = fluid.layers.fc(input=inputs, size=hid_dim)
        lstm, cell = fluid.layers.dynamic_lstm(
Q
QI JUN 已提交
113 114 115
            input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
        inputs = [fc, lstm]

116 117
    fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
    lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
Q
QI JUN 已提交
118

119 120 121 122
    prediction = fluid.layers.fc(input=[fc_last, lstm_last],
                                 size=class_dim,
                                 act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
123
    avg_cost = fluid.layers.mean(cost)
124
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
125
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
126

127

武毅 已提交
128 129 130 131 132 133
def train(word_dict,
          net_method,
          use_cuda,
          parallel=False,
          save_dirname=None,
          is_local=True):
134 135
    BATCH_SIZE = 128
    PASS_NUM = 5
Q
QI JUN 已提交
136 137 138
    dict_dim = len(word_dict)
    class_dim = 2

Y
Yu Yang 已提交
139 140 141
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
142 143 144 145 146

    if not parallel:
        cost, acc_out, prediction = net_method(
            data, label, input_dim=dict_dim, class_dim=class_dim)
    else:
147
        places = get_places()
148 149 150 151 152 153 154 155 156 157 158
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            cost, acc, _ = net_method(
                pd.read_input(data),
                pd.read_input(label),
                input_dim=dict_dim,
                class_dim=class_dim)
            pd.write_output(cost)
            pd.write_output(acc)

        cost, acc = pd()
Y
Yu Yang 已提交
159 160
        cost = fluid.layers.mean(cost)
        acc_out = fluid.layers.mean(acc)
161 162 163 164
        prediction = None
        assert save_dirname is None

    adagrad = fluid.optimizer.Adagrad(learning_rate=0.002)
W
Wu Yi 已提交
165
    adagrad.minimize(cost)
Q
QI JUN 已提交
166 167 168 169 170

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=1000),
        batch_size=BATCH_SIZE)
171
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
172
    exe = fluid.Executor(place)
Y
Yu Yang 已提交
173
    feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
Q
QI JUN 已提交
174

武毅 已提交
175 176 177
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

178
        for pass_id in range(PASS_NUM):
武毅 已提交
179 180 181 182
            for data in train_data():
                cost_val, acc_val = exe.run(main_program,
                                            feed=feeder.feed(data),
                                            fetch_list=[cost, acc_out])
183
                print("cost=" + str(cost_val) + " acc=" + str(acc_val))
武毅 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196
                if cost_val < 0.4 and acc_val > 0.8:
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, ["words"],
                                                      prediction, exe)
                    return
                if math.isnan(float(cost_val)):
                    sys.exit("got NaN loss, training failed.")
        raise AssertionError("Cost is too large for {0}".format(
            net_method.__name__))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
197 198
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
199 200 201 202
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
203
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
204
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
205 206
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
207
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
208
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
209 210 211 212 213 214 215 216
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
217 218


L
Liu Yiqun 已提交
219
def infer(word_dict, use_cuda, save_dirname=None):
220 221 222 223 224 225
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

226 227 228 229 230 231 232 233 234 235 236
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        word_dict_len = len(word_dict)

K
Kexin Zhao 已提交
237
        # Setup input by creating LoDTensor to represent sequence of words.
238 239
        # Here each word is the basic element of the LoDTensor and the shape of
        # each word (base_shape) should be [1] since it is simply an index to
K
Kexin Zhao 已提交
240
        # look up for the corresponding word vector.
241
        # Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
242 243 244 245
        # which has only one level of detail. Then the created LoDTensor will have only
        # one higher level structure (sequence of words, or sentence) than the basic
        # element (word). Hence the LoDTensor will hold data for three sentences of
        # length 3, 4 and 2, respectively.
246 247
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[3, 4, 2]]
K
Kexin Zhao 已提交
248 249
        base_shape = [1]
        # The range of random integers is [low, high]
K
Kexin Zhao 已提交
250
        tensor_words = fluid.create_random_int_lodtensor(
251 252 253 254 255
            recursive_seq_lens,
            base_shape,
            place,
            low=0,
            high=word_dict_len - 1)
256 257 258 259 260 261 262 263

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == "words"
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_words},
                          fetch_list=fetch_targets,
                          return_numpy=False)
264
        print(results[0].recursive_sequence_lengths())
265
        np_data = np.array(results[0])
266 267
        print("Inference Shape: ", np_data.shape)
        print("Inference results: ", np_data)
268 269


270
def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
271 272 273
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

274 275 276 277 278 279
    train(
        word_dict,
        net_method,
        use_cuda,
        parallel=parallel,
        save_dirname=save_dirname)
280
    infer(word_dict, use_cuda, save_dirname)
281 282


283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
class TestUnderstandSentiment(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.word_dict = paddle.dataset.imdb.word_dict()

    @contextlib.contextmanager
    def new_program_scope(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield

    def test_conv_cpu(self):
        with self.new_program_scope():
299 300 301 302
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
303
                save_dirname="understand_sentiment_conv.inference.model")
304

305 306 307 308 309 310 311 312 313
    def test_conv_cpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
                parallel=True)

    @unittest.skip(reason="make CI faster")
314 315
    def test_stacked_lstm_cpu(self):
        with self.new_program_scope():
316 317 318 319 320
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=False,
                save_dirname="understand_sentiment_stacked_lstm.inference.model")
321

322 323 324 325 326 327 328 329
    def test_stacked_lstm_cpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=False,
                parallel=True)

330 331
    def test_conv_gpu(self):
        with self.new_program_scope():
332 333 334 335
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
336
                save_dirname="understand_sentiment_conv.inference.model")
337 338 339 340 341 342 343 344

    def test_conv_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
                parallel=True)
345

346
    @unittest.skip(reason="make CI faster")
347 348
    def test_stacked_lstm_gpu(self):
        with self.new_program_scope():
349 350 351 352 353
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=True,
                save_dirname="understand_sentiment_stacked_lstm.inference.model")
Q
QI JUN 已提交
354

355 356 357 358 359 360 361 362
    def test_stacked_lstm_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=True,
                parallel=True)

Y
Yu Yang 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    @unittest.skip(reason='make CI faster')
    def test_dynrnn_lstm_gpu(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=dyn_rnn_lstm,
                use_cuda=True,
                parallel=False)

    def test_dynrnn_lstm_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=dyn_rnn_lstm,
                use_cuda=True,
                parallel=True)

Q
QI JUN 已提交
380 381

if __name__ == '__main__':
382
    unittest.main()