distribute_transpiler.py 95.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
147
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
148 149
          want to change it, please be sure you have read the slice_variable function.

150 151 152 153 154
    Examples:
        .. code-block:: python

            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
G
gongweibao 已提交
155 156 157 158 159
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
160
    enable_dc_asgd = False
161
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
162
    mode = "pserver"
163
    print_log = False
W
Wu Yi 已提交
164
    wait_port = True
Q
Qiao Longfei 已提交
165 166
    # split the send recv var in runtime
    runtime_split_send_recv = False
167
    sync_mode = True
G
gongweibao 已提交
168

169 170 171 172 173 174 175
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

176
    # if mode is collective
177
    # supported modes: grad_allreduce, local_sgd
178 179
    collective_mode = None

G
gongweibao 已提交
180

Y
gen rst  
yi.wu 已提交
181
class DistributeTranspiler(object):
Y
yi.wu 已提交
182 183 184 185
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
186
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
187

W
Wu Yi 已提交
188 189 190 191 192 193 194 195 196
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
197 198 199 200

    Examples:
        .. code-block:: python

201 202 203 204 205 206 207 208 209 210
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
211 212 213 214 215 216
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
217
            role = "PSERVER"
T
Tink_Y 已提交
218 219 220 221 222 223
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
224
                                                                pserver_program)
T
Tink_Y 已提交
225 226 227 228
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
229 230
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
231 232
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
233
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
234
            t = fluid.DistributeTranspiler(config=config)
235
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
236
            exe = fluid.ParallelExecutor(
237 238 239
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
240 241
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
242
    """
Y
Yancey1989 已提交
243

G
gongweibao 已提交
244 245 246 247 248 249 250 251 252
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

253 254 255
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
256 257 258
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
259 260 261 262
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
263 264
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
265 266 267 268 269 270
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
271 272
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
273 274 275

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
276 277 278 279 280 281 282 283 284

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
285 286 287 288
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
289 290 291 292 293
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
294 295 296 297 298
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
299 300 301 302 303 304 305
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
306 307 308 309 310
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
        else:
            raise ValueError('invalid trainers config: ' + str(trainers))

        if len(endpoints) == 1:
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
            transpiler = collective.GradAllReduce()
        elif collective_mode == 'local_sgd':
            transpiler = collective.LocalSGD()
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
351
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
352
        sparse_update_ops = []
353
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
354 355
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
356
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
357 358 359
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
360
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
361
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
362 363 364
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
365
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
366
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
367 368 369 370 371 372 373
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
374

375 376 377 378 379
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
380
                  sync_mode=True,
W
Wu Yi 已提交
381 382
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
383
        """
384
        Run the transpiler. Transpile the input program.
Y
yi.wu 已提交
385 386 387 388 389 390

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
391 392
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
393 394
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
395 396 397
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
398
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
399 400
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
401 402 403
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
404 405 406 407 408 409 410 411 412 413 414

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
415 416 417
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
418 419
        if startup_program is None:
            startup_program = default_startup_program()
420
        self.origin_program = program
W
Wu Yi 已提交
421 422
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
423

W
Wu Yi 已提交
424 425
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
426
            self.origin_program._trainers_endpoints = trainers.split(",")
427 428
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
429 430 431 432 433
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
434
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
435 436 437 438 439 440 441 442 443 444 445
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
446 447 448 449
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
450 451
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
452 453
            return

454 455 456 457 458 459 460 461 462 463 464
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

465
        self.trainer_num = trainers
466
        self.sync_mode = sync_mode
467 468 469
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
470
        self.vars_overview = VarsDistributed()
471 472
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
473
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
474 475
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
476
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
477
        self.grad_name_to_param_name = dict()
478 479
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
480
            self.grad_name_to_param_name[grad_var.name] = param_var.name
481

Q
Qiao Longfei 已提交
482
        # get all sparse update ops
Q
Qiao Longfei 已提交
483
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
484
            self.origin_program)
Q
Qiao Longfei 已提交
485
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
486 487
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
488 489 490
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
491
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
492 493 494
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

495
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
496
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
497
        self._init_splited_vars()
498

G
gongweibao 已提交
499
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
500
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
501
        send_vars = []
502 503 504 505 506 507

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
508
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
509

G
gongweibao 已提交
510
        if not self.config.slice_var_up:
511 512
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
513

514
        self.grad_name_to_send_dummy_out = dict()
515
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
516
            eplist = ps_dispatcher.dispatch(splited_vars)
517

G
gongweibao 已提交
518
            if not self.config.slice_var_up:
519 520
                assert (len(splited_vars) == 1)

521
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
522
            if len(splited_vars) == 1:
523
                splited_grad_varname = splited_vars[0].name
524 525
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
526 527
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
528
                        grad_varname]
Q
Qiao Longfei 已提交
529 530 531 532
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
533
            elif len(splited_vars) > 1:
534
                orig_var = program.global_block().vars[splited_grad_varname]
535 536
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
537 538 539 540
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
541 542
            else:
                AssertionError("Can not insert the send op by original "
543
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
544

W
Wu Yi 已提交
545 546
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
547
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
548

Q
Qiao Longfei 已提交
549 550 551 552 553 554 555 556 557 558 559
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
560 561 562 563
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
564
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
565
                index=index + 1,
566
                type="send",
Q
Qiao Longfei 已提交
567
                inputs={"X": send_input_vars},
568
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
569 570
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
571 572
                    "sections": sections,
                    "send_varnames": send_varnames,
573
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
574 575 576 577
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
578
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
579
                })
Y
update  
Yancey1989 已提交
580 581
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
582 583

        if self.sync_mode:
W
Wu Yi 已提交
584 585
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
586 587 588 589
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
590
            input_deps = list(self.grad_name_to_send_dummy_out.values())
591

Y
Yancey1989 已提交
592 593
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
594
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
595
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
596 597
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
598 599
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
600
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
601
                })
Y
Yancey1989 已提交
602

G
gongweibao 已提交
603
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
604
        recv_vars = []
Y
update  
Yancey1989 已提交
605
        for _, var in enumerate(send_vars):
606
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
607
        ps_dispatcher.reset()
Y
Yancey1989 已提交
608 609
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
610
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
611 612
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
613

614 615 616 617
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
618
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
619
        all_recv_outputs = []
620
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
621
            eps = []
Q
Qiao Longfei 已提交
622
            table_names = []
Y
Yancey1989 已提交
623 624 625
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
626
                table_names.append(var.name)
W
Wu Yi 已提交
627 628 629 630
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
631
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
632
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
633

W
Wu Yi 已提交
634 635 636 637 638 639 640 641 642
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
643
            if param_varname in self.sparse_param_to_height_sections:
644 645 646 647 648 649

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
650 651
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
652 653
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
654
            else:
Q
Qiao Longfei 已提交
655 656 657
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
658
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
659
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
660
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
661

Q
Qiao Longfei 已提交
662 663 664 665 666 667
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
668
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
669 670 671 672 673 674
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
675

Q
qiaolongfei 已提交
676
        if self.sync_mode:
W
Wu Yi 已提交
677
            # form a WAW dependency
Q
qiaolongfei 已提交
678 679 680
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
681
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
682 683
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
684
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
685 686
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
687

688
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
689 690
            if len(splited_var) <= 1:
                continue
691
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
692
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
693 694 695 696 697 698 699 700 701
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
702

G
gongweibao 已提交
703 704
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

705
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
706 707
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
708
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
709

710 711 712
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
713
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
714 715 716 717 718
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
719 720 721 722 723 724 725 726 727 728 729 730

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
731
        """
T
typhoonzero 已提交
732
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
733
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
734

T
typhoonzero 已提交
735
        lr_ops = self._get_lr_ops()
736
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
737 738
        delete_ops(self.origin_program.global_block(), lr_ops)

739 740
        # delete table init op
        if self.has_distributed_lookup_table:
741 742 743
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
744 745
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
746 747 748 749 750
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
751
            table_init_op = table_param_init_op[0]
752 753 754 755 756 757
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
758

759
        self.origin_program.__str__()
G
gongweibao 已提交
760

W
Wu Yi 已提交
761 762 763
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

764
        return self.origin_program
T
typhoonzero 已提交
765

W
Wu Yi 已提交
766
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
767 768 769 770
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
771
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
772
            eplist (list): A list of strings indicating
G
gongweibao 已提交
773 774 775 776

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
777
        startup_program = self.startup_program
G
gongweibao 已提交
778 779 780 781

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
782
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
803
                inputs={"X": []},
G
gongweibao 已提交
804 805 806
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
807
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
808 809 810
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
811 812
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
813 814 815
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
816
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
817 818
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
819
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
820 821 822
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
823
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
824
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
825 826
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
827
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
828
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
829 830 831 832 833 834 835 836 837 838
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
839 840 841 842 843 844 845 846
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
847 848
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
849
        Get parameter server side program.
850

Y
yi.wu 已提交
851 852
        Args:
            endpoint (str): current parameter server endpoint.
853

Y
yi.wu 已提交
854 855
        Returns:
            Program: the program for current parameter server to run.
856 857 858 859 860 861 862 863 864 865 866 867 868 869

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
870
        """
Y
yi.wu 已提交
871 872 873 874
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
875 876 877
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
878 879
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
880
        pserver_program.random_seed = self.origin_program.random_seed
881 882
        pserver_program._copy_dist_param_info_from(self.origin_program)

883
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
884 885 886 887 888 889 890 891
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
892 893 894 895 896
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
897 898 899 900 901 902 903 904 905
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
906
            if self.sync_mode and self.trainer_num > 1:
907
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
908 909 910 911 912 913 914 915 916
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
917

Q
qiaolongfei 已提交
918
        # step 3
919
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
920 921 922
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
923
        # step 3.2
T
typhoonzero 已提交
924 925 926 927
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
928 929
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
930
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
931
        # step 3.3
W
Wu Yi 已提交
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
950
        # Iterate through the ops, and if an op and the optimize ops
951
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
952
        # append it into the sub program.
T
typhoonzero 已提交
953 954 955

        global_ops = []

956 957 958
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
959 960
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
961
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
962
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
963 964
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
965
            elif op not in lr_ops:
Q
Qiyang Min 已提交
966
                self._append_pserver_non_opt_ops(block, op)
967

Y
Yancey1989 已提交
968
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
969 970 971 972 973 974 975 976
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
977
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
978 979 980

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
981
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
982 983

            # clone ops
Y
Yancey1989 已提交
984 985
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
986
                # clone sub_block of op
Y
Yancey1989 已提交
987
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
988 989

            # reset the block of op
W
Wu Yi 已提交
990
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
991

992
        # append lr decay ops to the child block if exists
993
        lr_ops = self._get_lr_ops()
994 995
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
996
        if len(lr_ops) > 0:
W
Wu Yi 已提交
997
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
998
                pserver_program.num_blocks - 1)
999
            optimize_blocks.append(lr_decay_block)
1000
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1001
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1002
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1003 1004
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1005

T
typhoonzero 已提交
1006
        # append op to the current block
Q
qiaolongfei 已提交
1007
        grad_to_block_id = []
Q
qiaolongfei 已提交
1008
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1009
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1010
            per_opt_block = pserver_program._create_block(pre_block_idx)
1011
            optimize_blocks.append(per_opt_block)
1012
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1013
            # append grad merging ops before clip and weight decay
1014 1015
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1016
            for _, op in enumerate(self.optimize_ops):
1017
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1018
                # merged_var should be the input var name of L2Decay
1019 1020 1021
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1022 1023 1024
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1025 1026 1027 1028 1029 1030
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1031
                            op not in global_ops:
1032 1033 1034 1035 1036
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1037

1038
        # dedup grad to ids list
W
Wu Yi 已提交
1039
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1040
        # append global ops
1041
        if global_ops:
W
Wu Yi 已提交
1042
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1043
                pserver_program.num_blocks - 1)
1044
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1045
            for glb_op in global_ops:
X
Xi Chen 已提交
1046
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1047
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1048

1049
        # process distributed lookup_table
Q
qiaolongfei 已提交
1050
        prefetch_var_name_to_block_id = []
1051 1052
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1053
            table_opt_block = self._create_table_optimize_block(
1054
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1055
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1056
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1057
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1058 1059
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1060

T
tangwei12 已提交
1061
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1062 1063
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1064

1065
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1066 1067
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1068 1069 1070 1071 1072 1073
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1074
        attrs = {
1075
            "optimize_blocks": optimize_blocks,
1076 1077 1078
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1079
            "grad_to_block_id": grad_to_block_id,
1080
            "sparse_grad_to_param": sparse_grad_to_param,
1081
        }
T
tangwei12 已提交
1082 1083

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1084
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1085 1086
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1087

T
tangwei12 已提交
1088 1089 1090 1091
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1092 1093 1094 1095 1096
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1097
            attrs=attrs)
1098

W
Wu Yi 已提交
1099
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1100 1101
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1102 1103
        return pserver_program

W
Wu Yi 已提交
1104 1105 1106 1107 1108 1109
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1110

W
Wu Yi 已提交
1111 1112
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1127 1128
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1129 1130
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1131 1132
        return pserver_prog, pserver_startup

1133 1134
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1135
                            pserver_program=None,
1136
                            startup_program=None):
T
typhoonzero 已提交
1137
        """
W
Wu Yi 已提交
1138 1139
        **Deprecated**

T
typhoonzero 已提交
1140 1141 1142
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1143 1144 1145

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1146 1147
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1148
                when initalizing
1149

Y
yi.wu 已提交
1150 1151
        Returns:
            Program: parameter server side startup program.
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1167 1168
        """
        s_prog = Program()
W
Wu Yi 已提交
1169
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1170
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1182
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1183
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1184
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1185 1186 1187 1188
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1189
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1190 1191
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1202 1203

            if op_on_pserver:
1204 1205 1206
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1207
                if op.type in [
1208 1209
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1210
                ]:
W
Wu Yi 已提交
1211
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1212 1213 1214 1215
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1216
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1226

T
typhoonzero 已提交
1227 1228
        return s_prog

1229 1230
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1231
        block_suffix = "block"
1232 1233 1234
        block_idx = 0
        offset = 0
        is_slice = False
1235

1236
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1237

1238 1239
        if not block_name:
            return is_slice, block_idx, offset
1240

1241 1242 1243 1244
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1245 1246 1247 1248 1249
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1313

Y
yi.wu 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1353
    def _init_splited_vars(self):
Y
yi.wu 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1377
        if self.config.slice_var_up:
Y
yi.wu 已提交
1378 1379
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1380 1381 1382
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1383
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1384 1385
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1386 1387 1388
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1389 1390 1391 1392
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1393 1394
        assert (len(grad_blocks) == len(param_blocks))

1395
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1396 1397
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1414
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1415 1416 1417 1418
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1419
        # dict(grad_splited_var -> param_splited_var)
1420
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1421 1422 1423
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1424
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1425
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1426 1427

        # create mapping of endpoint -> split var to create pserver side program
1428
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1438
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1439 1440
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1441
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1442
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1443 1444
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1445 1446
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1447 1448 1449 1450 1451 1452

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1453 1454
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1455
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1456 1457 1458
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1459 1460
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1461 1462
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1463 1464 1465
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1466
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1467
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1468 1469

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1470
                    self.all_out_emb_vars.append(out_var)
1471 1472

                    # delete lookup_table_op
1473
                    delete_ops(program.global_block(), [op])
1474 1475 1476
                    # break for loop
                    break

S
seiriosPlus 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1523
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1524
        # 2. add split_ids_op and send_op to send gradient to pservers
1525

1526 1527
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1528
        table_grad_name = grad_var_name(self.table_name)
1529 1530 1531 1532
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1533
                program.global_block()._insert_op(
1534 1535 1536 1537 1538
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1539 1540
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1541
                program.global_block()._insert_op(
1542
                    index=op_index + 2,
1543
                    type="send",
1544
                    inputs={'X': self.trainer_side_table_grad_list},
1545 1546 1547 1548 1549
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1550
                    attrs={
1551
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1552
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1553
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1554 1555 1556 1557 1558
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1559
                    })
1560 1561 1562 1563 1564 1565
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1566
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1592
        return prefetch_var_name_to_block_id
1593 1594

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1595
                                     pre_block_idx, grad_to_block_id):
1596
        # STEP: create table optimize block
1597
        table_opt_block = pserver_program._create_block(pre_block_idx)
1598
        # create table param and grad var in pserver program
1599 1600
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1601 1602 1603
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1604 1605
        ][0]

Y
Yancey1989 已提交
1606 1607
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1608

T
tangwei12 已提交
1609
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1610 1611
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1612 1613 1614
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1615 1616
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1617
            shape=table_shape,
Y
Yancey1989 已提交
1618 1619 1620
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1621

1622 1623
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1624
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1625
            self.origin_program.global_block().vars[grad_var_name(
1626
                self.table_name)])
1627

1628 1629 1630
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1631

1632 1633 1634
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1635
            pserver_side_table_grad_list = [
1636 1637 1638 1639 1640 1641 1642 1643 1644
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1645
            # append sum op for pserver_side_table_grad_list
1646 1647
            table_opt_block.append_op(
                type="sum",
1648
                inputs={"X": pserver_side_table_grad_list},
1649 1650
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1651 1652
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1653
            origin_grad_name = grad_var.name
1654 1655
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1656 1657
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1658
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1659
            grad_var = pserver_program.global_block()._rename_var(
1660
                origin_grad_name, splited_grad_name)
1661 1662 1663 1664 1665 1666 1667

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1668
        # only support sgd now
1669 1670 1671
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1672
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1673

1674 1675 1676
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1677 1678
        return table_opt_block

T
tangwei12 已提交
1679 1680 1681 1682 1683
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1684
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1685
            name="kLookupTablePath",
T
tangwei12 已提交
1686 1687
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1688

W
Wu Yi 已提交
1689
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1690
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1691 1692 1693 1694
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1695
            attrs={'file_path': "none"})
T
tangwei12 已提交
1696 1697 1698

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1699 1700 1701 1702 1703
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1704
        Create vars for each split.
T
typhoonzero 已提交
1705 1706
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1707 1708 1709 1710
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1711
        Returns:
1712
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1713
                from original var name to each var split.
T
typhoonzero 已提交
1714
        """
1715 1716

        # varname->[(block_id, current_block_size)]
1717
        block_map = collections.OrderedDict()
1718

1719
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1720 1721
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1722
            if varname not in block_map:
T
typhoonzero 已提交
1723
                block_map[varname] = []
1724
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1725

M
minqiyang 已提交
1726
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1727
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1728
            if len(splited) == 1:
1729
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1730
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1731
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1732
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1733 1734 1735 1736 1737
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1738
                continue
T
typhoonzero 已提交
1739
            var_mapping[varname] = []
T
typhoonzero 已提交
1740 1741 1742 1743
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1744

T
typhoonzero 已提交
1745
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1746
                size = block[1]
M
minqiyang 已提交
1747
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1748 1749 1750
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1751
                new_var_name = ""
1752
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1753
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1754
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1755 1756
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1757
                                   (varname, i)
T
typhoonzero 已提交
1758
                var = program.global_block().create_var(
T
typhoonzero 已提交
1759 1760
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1761
                    dtype=orig_var.dtype,
1762
                    type=orig_var.type,
T
typhoonzero 已提交
1763
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1764
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1765
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1766
        return var_mapping
T
done  
typhoonzero 已提交
1767

1768
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1769 1770 1771 1772 1773 1774
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1775
            persistable=persistable)
T
done  
typhoonzero 已提交
1776

Q
Qiao Longfei 已提交
1777 1778 1779 1780 1781 1782 1783
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1784
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1785 1786
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1787
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1788
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1789
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1790 1791
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1792
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1793 1794 1795 1796
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1797 1798 1799 1800
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1801
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1802
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1803 1804 1805 1806
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1807
                attrs={
Q
Qiao Longfei 已提交
1808
                    "sections": height_sections,
1809 1810
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1811 1812 1813
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1814

T
typhoonzero 已提交
1815 1816 1817 1818
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1819
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1832
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1833 1834
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1835 1836
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1837
                return param_shape
1838 1839 1840
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1841 1842 1843
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1844 1845
        elif op_type == "sgd":
            pass
1846 1847 1848 1849
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1850 1851
        return orig_shape

1852 1853
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1854
        orig_var_name = ""
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1865
        else:
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1888
            return None
1889 1890 1891 1892
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1893
        else:
1894
            merged_var_name = orig_varname
1895 1896

        merged_var = pserver_block.vars[merged_var_name]
1897 1898 1899
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1900
            for i in range(self.trainer_num):
1901
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1902
                                   (merged_var_name, i)
1903 1904 1905 1906
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1907 1908
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1909 1910 1911 1912 1913
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1914
        return merged_var
T
typhoonzero 已提交
1915

W
Wu Yi 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1978
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1979 1980
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
1981
        program = optimize_block.program
T
typhoonzero 已提交
1982
        pserver_block = program.global_block()
1983
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1994 1995 1996 1997
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1998
        for key in opt_op.input_names:
T
typhoonzero 已提交
1999
            if key == "Grad":
W
Wu Yi 已提交
2000 2001 2002
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2013
            elif key == "Param":
W
Wu Yi 已提交
2014
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2015 2016
                if not param_block:
                    return
T
typhoonzero 已提交
2017
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2018
                    name=param_block.name,
T
typhoonzero 已提交
2019
                    persistable=True,
T
typhoonzero 已提交
2020 2021 2022
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2023
            elif key == "LearningRate":
2024
                # learning rate variable has already be created by non-optimize op,
2025
                # don't create it once again.
2026
                lr_varname = opt_op.input(key)[0]
2027
                if lr_varname in pserver_block.vars:
2028 2029 2030 2031 2032 2033 2034 2035 2036
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2037

T
typhoonzero 已提交
2038
        for key in opt_op.input_names:
2039
            new_shape = None
W
Wu Yi 已提交
2040
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2041
                continue
2042
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2043
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2044
            # update accumulator variable shape
2045 2046
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2047
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2048 2049 2050 2051 2052
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2053

2054
        # change output's ParamOut variable
2055 2056
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2057
        outputs["ParamOut"] = new_inputs["Param"]
2058
        optimize_block.append_op(
T
typhoonzero 已提交
2059 2060
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2061
            outputs=outputs,
G
gongweibao 已提交
2062
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2063

2064 2065 2066 2067 2068 2069
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2081
        grad_block = None
M
minqiyang 已提交
2082
        for _, g in six.iteritems(var_dict):
2083
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2084
                # skip per trainer vars
2085
                if g.name.find(".trainer_") == -1:
2086
                    # only param or grads have splited blocks
2087 2088
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2089 2090
                        grad_block = g
                        break
2091 2092
        return grad_block

Q
Qiyang Min 已提交
2093 2094 2095
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2096
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2097 2098 2099 2100
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2101
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2102 2103 2104

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2105
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2106 2107 2108 2109
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2110
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2111

Y
Yancey1989 已提交
2112
        return block.append_op(
G
gongweibao 已提交
2113
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2114 2115

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2116
        program = optimize_block.program
2117
        # Append the ops for parameters that do not need to be optimized/updated
2118 2119
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2120
        for key, varlist in six.iteritems(inputs):
2121 2122
            if not isinstance(varlist, list):
                varlist = [varlist]
2123 2124 2125
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2126
                # for inputs/outputs
2127
                grad_block = self._get_pserver_grad_param_var(
2128 2129
                    var, program.global_block().vars)
                if grad_block:
2130
                    varlist[i] = grad_block
2131
                elif var.name not in program.global_block().vars:
2132 2133 2134 2135 2136
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2137

2138 2139
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2140
        for key, varlist in six.iteritems(outputs):
2141 2142
            if not isinstance(varlist, list):
                varlist = [varlist]
2143 2144 2145
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2146 2147
                    var, program.global_block().vars)
                if grad_block:
2148
                    varlist[i] = grad_block
2149
                elif var.name not in program.global_block().vars:
2150 2151 2152 2153 2154
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2155

Y
Yancey1989 已提交
2156
        return optimize_block.append_op(
T
typhoonzero 已提交
2157
            type=opt_op.type,
T
typhoonzero 已提交
2158 2159
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2160
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2161

2162 2163 2164 2165
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2166
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2167
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2168 2169 2170 2171 2172 2173
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2174 2175
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2176 2177 2178 2179 2180 2181
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2182
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2183
        if "Param" in op.input_names and \
T
tangwei12 已提交
2184
                "LearningRate" in op.input_names:
2185 2186 2187 2188 2189 2190 2191
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2192
        if op.input("Param")[0] in param_names:
2193 2194 2195
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2196
                param = op.input("Param")[0]
T
typhoonzero 已提交
2197
                if same_or_split_var(n, param) and n != param:
2198 2199 2200
                    return True
            return False

T
typhoonzero 已提交
2201
    def _get_input_map_from_op(self, varmap, op):
2202
        """Returns a dict from op input name to the vars in varmap."""
2203
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2215
        """Returns a dict from op output name to the vars in varmap."""
2216
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2226 2227

    def _get_lr_ops(self):
2228 2229 2230
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2231 2232 2233 2234
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2235 2236 2237 2238 2239
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2240 2241 2242 2243
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2244
            if self._is_optimizer_op(op):
2245 2246 2247 2248
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2249
        block = self.origin_program.global_block()
2250 2251 2252 2253 2254
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2255

2256 2257 2258 2259 2260
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2261
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2262 2263 2264 2265 2266 2267
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2268 2269
                    # we only need to append op for once
                    break
2270
        return lr_ops
Y
Yancey1989 已提交
2271

W
Wu Yi 已提交
2272 2273 2274 2275 2276
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2277 2278
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2279 2280 2281
            return True
        return False

Y
Yancey1989 已提交
2282
    def _get_optimize_pass(self):
2283
        """
2284
        Get optimizer operators, parameters and gradients from origin_program
2285 2286
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2287
            params_grads (dict): parameter->gradient.
2288
        """
Y
Yancey1989 已提交
2289 2290 2291
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2292 2293
        # tmp set to dedup
        optimize_params = set()
2294
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2295
        for op in block.ops:
W
Wu Yi 已提交
2296
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2297
                opt_ops.append(op)
2298 2299 2300 2301 2302 2303
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2304 2305
                        params_grads.append([
                            origin_var_dict[param_name],
2306
                            origin_var_dict[grad_name]
2307
                        ])
Y
Yancey1989 已提交
2308 2309 2310
            else:
                pass
        return opt_ops, params_grads