stat.py 28.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define statistical functions of a tensor
16

17
import paddle
18
from paddle import _C_ops, _ir_ops, ir
19
from paddle.framework import in_dynamic_mode
20

21
from ..common_ops_import import Variable
22 23
from ..fluid.data_feeder import check_type, check_variable_and_dtype
from ..framework import LayerHelper, core
24
from .math import _get_reduce_axis_with_tensor
25
from .search import where
26

27 28
__all__ = []

29 30 31 32 33 34

def mean(x, axis=None, keepdim=False, name=None):
    """
    Computes the mean of the input tensor's elements along ``axis``.

    Args:
35
        x (Tensor): The input Tensor with data type float32, float64.
36 37 38 39 40 41 42
        axis (int|list|tuple, optional): The axis along which to perform mean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), mean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, mean is
43
            calculated over all elements of ``x``. Default is None.
44
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
45
            in the output Tensor. If ``keepdim`` is True, the dimensions of
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of average along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
61 62 63 64 65 66
            x = paddle.to_tensor([[[1., 2., 3., 4.],
                                   [5., 6., 7., 8.],
                                   [9., 10., 11., 12.]],
                                  [[13., 14., 15., 16.],
                                   [17., 18., 19., 20.],
                                   [21., 22., 23., 24.]]])
67
            out1 = paddle.mean(x)
68
            # 12.5
69 70 71 72 73 74 75 76 77 78 79 80 81
            out2 = paddle.mean(x, axis=-1)
            # [[ 2.5  6.5 10.5]
            #  [14.5 18.5 22.5]]
            out3 = paddle.mean(x, axis=-1, keepdim=True)
            # [[[ 2.5]
            #   [ 6.5]
            #   [10.5]]
            #  [[14.5]
            #   [18.5]
            #   [22.5]]]
            out4 = paddle.mean(x, axis=[0, 2])
            # [ 8.5 12.5 16.5]
    """
82
    if in_dynamic_mode():
83
        return _C_ops.mean(x, axis, keepdim)
84
    else:
85 86
        if ir.core._use_new_ir_api():
            return _ir_ops.mean(x, axis, keepdim)
87 88 89 90 91 92
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        check_variable_and_dtype(
            x,
            'x/input',
            ['uint16', 'float16', 'float32', 'float64'],
            'mean/reduce_mean',
93
        )
94 95 96 97 98 99 100 101 102 103 104
        check_type(
            axis, 'axis/dim', (int, list, tuple, Variable), 'mean/reduce_mean'
        )
        if isinstance(axis, (list, tuple)):
            for item in axis:
                check_type(
                    item,
                    'elements of axis/dim',
                    (int, Variable),
                    'mean/reduce_mean',
                )
105

106
        helper = LayerHelper('mean', **locals())
107

108 109 110 111 112 113 114 115 116
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='reduce_mean',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
117 118


119
def var(x, axis=None, unbiased=True, keepdim=False, name=None):
120
    """
121
    Computes the variance of ``x`` along ``axis`` .
122 123

    Args:
L
LoneRanger 已提交
124
        x (Tensor): The input Tensor with data type float16, float32, float64.
125 126 127 128
        axis (int|list|tuple, optional): The axis along which to perform variance calculations. ``axis`` should be int, list(int) or tuple(int).

            - If ``axis`` is a list/tuple of dimension(s), variance is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            - If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` .
129 130 131 132 133
            - If ``axis`` is None, variance is calculated over all elements of ``x``. Default is None.

        unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
134 135

    Returns:
136
        Tensor, results of variance along ``axis`` of ``x``, with the same data type as ``x``.
137 138 139 140 141

    Examples:
        .. code-block:: python

            import paddle
142

Z
zhupengyang 已提交
143
            x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
144
            out1 = paddle.var(x)
145
            # 2.66666667
146 147
            out2 = paddle.var(x, axis=1)
            # [1.         4.33333333]
148
    """
149
    if not in_dynamic_mode():
L
LoneRanger 已提交
150 151 152
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'var'
        )
153 154

    u = mean(x, axis, True, name)
155
    out = paddle.sum(paddle.pow((x - u), 2), axis, keepdim=keepdim, name=name)
156

157
    dtype = x.dtype
158 159 160
    n = paddle.cast(paddle.numel(x), paddle.int64) / paddle.cast(
        paddle.numel(out), paddle.int64
    )
161
    n = n.astype(dtype)
162
    if unbiased:
163
        one_const = paddle.ones([], x.dtype)
164
        n = where(n > one_const, n - 1.0, one_const)
165
    n.stop_gradient = True
166 167 168
    out /= n
    return out

S
swtkiwi 已提交
169

170 171 172
def std(x, axis=None, unbiased=True, keepdim=False, name=None):
    """
    Computes the standard-deviation of ``x`` along ``axis`` .
L
Liufang Sang 已提交
173 174

    Args:
L
LoneRanger 已提交
175
        x (Tensor): The input Tensor with data type float16, float32, float64.
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        axis (int|list|tuple, optional): The axis along which to perform
            standard-deviation calculations. ``axis`` should be int, list(int)
            or tuple(int). If ``axis`` is a list/tuple of dimension(s),
            standard-deviation is calculated along all element(s) of ``axis`` .
            ``axis`` or element(s) of ``axis`` should be in range [-D, D),
            where D is the dimensions of ``x`` . If ``axis`` or element(s) of
            ``axis`` is less than 0, it works the same way as :math:`axis + D` .
            If ``axis`` is None, standard-deviation is calculated over all
            elements of ``x``. Default is None.
        unbiased (bool, optional): Whether to use the unbiased estimation. If
            ``unbiased`` is True, the standard-deviation is calculated via the
            unbiased estimator. If ``unbiased`` is True,  the divisor used in
            the computation is :math:`N - 1`, where :math:`N` represents the
            number of elements along ``axis`` , otherwise the divisor is
            :math:`N`. Default is True.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Liufang Sang 已提交
198 199

    Returns:
200 201 202
        Tensor, results of standard-deviation along ``axis`` of ``x``, with the
        same data type as ``x``.

L
Liufang Sang 已提交
203 204 205 206
    Examples:
        .. code-block:: python

            import paddle
207

Z
zhupengyang 已提交
208
            x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
209
            out1 = paddle.std(x)
210
            # 1.63299316
211
            out2 = paddle.std(x, unbiased=False)
212
            # 1.49071205
213
            out3 = paddle.std(x, axis=1)
214
            # [1.       2.081666]
215

L
Liufang Sang 已提交
216
    """
217
    if not in_dynamic_mode():
L
LoneRanger 已提交
218 219 220
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'std'
        )
221 222
    out = var(**locals())
    return paddle.sqrt(out)
223 224 225 226


def numel(x, name=None):
    """
227
    Returns the number of elements for a tensor, which is a 0-D int64 Tensor with shape [].
228 229 230

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
231 232
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
233 234

    Returns:
235
        Tensor: The number of elements for the input Tensor, whose shape is [].
236 237 238 239

    Examples:
        .. code-block:: python

240
            import paddle
241

242 243
            x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32')
            numel = paddle.numel(x) # 140
244 245 246


    """
247
    if in_dynamic_mode():
248
        return _C_ops.numel(x)
249 250 251 252 253 254 255 256 257
    else:
        if not isinstance(x, Variable):
            raise TypeError("x must be a Tensor in numel")
        helper = LayerHelper('numel', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.INT64
        )
        helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out})
        return out
Z
zhulei 已提交
258 259


260
def nanmedian(x, axis=None, keepdim=False, name=None):
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    r"""
    Compute the median along the specified axis, while ignoring NaNs.

    If the valid count of elements is a even number,
    the average value of both elements in the middle is calculated as the median.

    Args:
        x (Tensor): The input Tensor, it's data type can be int32, int64, float16, float32, float64.
        axis (None|int|list|tuple, optional):
            The axis along which to perform median calculations ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
278
            the output Tensor is squeezed in ``axis`` . Default is False.
279 280 281 282 283 284 285 286 287 288 289 290 291
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. The output dtype is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[float('nan'), 2. , 3. ], [0. , 1. , 2. ]])

            y1 = x.nanmedian()
292
            # y1 is 2.
293 294

            y2 = x.nanmedian(0)
295
            # y2 is [0., 1.5, 2.5]
296

297 298
            y3 = x.nanmedian(0, keepdim=True)
            # y3 is [[0.,  1.5, 2.5]]
299 300

            y4 = x.nanmedian((0, 1))
301
            # y4 is 2.
302 303 304 305 306 307 308 309 310 311 312 313 314 315
    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")

    if isinstance(axis, (list, tuple)) and len(axis) == 0:
        raise ValueError("Axis list should not be empty.")

    if axis is None:
        axis = []
    elif isinstance(axis, tuple):
        axis = list(axis)
    elif isinstance(axis, int):
        axis = [axis]

316
    if in_dynamic_mode():
Z
zyfncg 已提交
317
        return _C_ops.nanmedian(x, axis, keepdim)
318 319 320 321 322 323 324
    else:
        check_variable_and_dtype(
            x,
            'X',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'nanmedian',
        )
325

326 327 328 329 330 331 332 333 334 335 336
        helper = LayerHelper('nanmedian', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim}
        out = helper.create_variable_for_type_inference(x.dtype)
        medians = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='nanmedian',
            inputs={'X': x},
            outputs={'Out': out, 'MedianIndex': medians},
            attrs=attrs,
        )
        return out
337 338


Z
zhulei 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
def median(x, axis=None, keepdim=False, name=None):
    """
    Compute the median along the specified axis.

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
        axis (int, optional): The axis along which to perform median calculations ``axis`` should be int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(12).reshape([3, 4])
366 367 368 369
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 1 , 2 , 3 ],
            #         [4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11]])
Z
zhulei 已提交
370 371

            y1 = paddle.median(x)
372 373
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        5.50000000)
Z
zhulei 已提交
374 375

            y2 = paddle.median(x, axis=0)
376 377
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4., 5., 6., 7.])
Z
zhulei 已提交
378 379

            y3 = paddle.median(x, axis=1)
380 381
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 5.50000000, 9.50000000])
Z
zhulei 已提交
382 383

            y4 = paddle.median(x, axis=0, keepdim=True)
384 385
            # Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6., 7.]])
Z
zhulei 已提交
386 387 388 389

    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")
390

391 392 393
    if x.size == 0:
        raise ValueError("In median, the size of input x should not be 0.")

394
    is_flatten = False
Z
zhulei 已提交
395
    dims = len(x.shape)
396 397 398 399 400
    if dims == 0:
        assert axis in [
            -1,
            0,
            None,
401
        ], 'when input 0-D, axis can only be [-1, 0] or default None'
402 403 404 405 406
        is_flatten = True

    if axis is None:
        is_flatten = True

Z
zhulei 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    if is_flatten:
        x = paddle.flatten(x)
        axis = 0
    else:
        if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
            raise ValueError(
                "In median, axis should be none or an integer in range [-rank(x), rank(x))."
            )
        if axis < 0:
            axis += dims
    sz = x.shape[axis]
    kth = sz >> 1
    tensor_topk, idx = paddle.topk(x, kth + 1, axis=axis, largest=False)
    dtype = 'float64' if x.dtype == core.VarDesc.VarType.FP64 else 'float32'
    if sz & 1 == 0:
        out_tensor = paddle.slice(
423 424
            tensor_topk, axes=[axis], starts=[kth - 1], ends=[kth]
        ) + paddle.slice(tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1])
Z
zhulei 已提交
425 426
        out_tensor = paddle.cast(out_tensor, dtype=dtype) / 2
    else:
427 428 429 430 431 432
        out_tensor = paddle.cast(
            paddle.slice(
                tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]
            ),
            dtype=dtype,
        )
433
    out_tensor = out_tensor + paddle.sum(
434 435
        paddle.cast(paddle.isnan(x), dtype=dtype) * x, axis=axis, keepdim=True
    )
436 437 438
    if is_flatten:
        if keepdim:
            out_tensor = out_tensor.reshape([1] * dims)
Z
zhulei 已提交
439
        else:
440
            out_tensor = out_tensor.reshape([])
Z
zhulei 已提交
441
    else:
442 443
        if not keepdim:
            out_tensor = out_tensor.squeeze(axis)
Z
zhulei 已提交
444
    return out_tensor
445 446


447
def _compute_quantile(x, q, axis=None, keepdim=False, ignore_nan=False):
448 449 450
    """
    Compute the quantile of the input along the specified axis.

451
    Args:
452
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
453
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
454 455 456 457 458 459 460 461 462 463 464
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
465 466 467
        ignore_nan: (bool, optional): Whether to ignore NaN of input Tensor.
            If ``ignore_nan`` is True, it will calculate nanquantile.
            Otherwise it will calculate quantile. Default is False.
468 469

    Returns:
470 471
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.
472
    """
473
    # Validate x
474 475
    if not isinstance(x, Variable):
        raise TypeError("input x should be a Tensor.")
476 477 478 479 480 481 482 483 484 485 486

    # Validate q
    if isinstance(q, (int, float)):
        q = [q]
    elif isinstance(q, (list, tuple)):
        if len(q) <= 0:
            raise ValueError("q should not be empty")
    else:
        raise TypeError("Type of q should be int, float, list or tuple.")

    # Validate axis
487
    dims = len(x.shape)
488
    out_shape = list(x.shape)
489 490 491 492 493 494 495 496 497
    if axis is None:
        x = paddle.flatten(x)
        axis = 0
        out_shape = [1] * dims
    else:
        if isinstance(axis, list):
            axis_src, axis_dst = [], []
            for axis_single in axis:
                if not isinstance(axis_single, int) or not (
498 499
                    axis_single < dims and axis_single >= -dims
                ):
500 501 502 503 504 505 506
                    raise ValueError(
                        "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                    )
                if axis_single < 0:
                    axis_single = axis_single + dims
                axis_src.append(axis_single)
                out_shape[axis_single] = 1
507

508 509
            axis_dst = list(range(-len(axis), 0))
            x = paddle.moveaxis(x, axis_src, axis_dst)
510 511 512 513 514 515
            if len(axis_dst) == 0:
                x = paddle.flatten(x)
                axis = 0
            else:
                x = paddle.flatten(x, axis_dst[0], axis_dst[-1])
                axis = axis_dst[0]
516 517 518 519 520 521 522 523
        else:
            if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )
            if axis < 0:
                axis += dims
            out_shape[axis] = 1
524 525

    mask = x.isnan()
526 527 528
    valid_counts = mask.logical_not().sum(
        axis=axis, keepdim=True, dtype='float64'
    )
529

530
    indices = []
531 532 533

    for q_num in q:
        if q_num < 0 or q_num > 1:
534
            raise ValueError("q should be in range [0, 1]")
535
        if in_dynamic_mode():
536 537 538 539
            q_num = paddle.to_tensor(q_num, dtype='float64')
        if ignore_nan:
            indices.append(q_num * (valid_counts - 1))
        else:
540
            # TODO: Use paddle.index_fill instead of where
541 542 543 544 545 546
            index = q_num * (valid_counts - 1)
            last_index = x.shape[axis] - 1
            nums = paddle.full_like(index, fill_value=last_index)
            index = paddle.where(mask.any(axis=axis, keepdim=True), nums, index)
            indices.append(index)

547 548
    sorted_tensor = paddle.sort(x, axis)

549
    outputs = []
550

551
    # TODO(chenjianye): replace the for-loop to directly take elements.
552 553 554
    for index in indices:
        indices_below = paddle.floor(index).astype(paddle.int32)
        indices_upper = paddle.ceil(index).astype(paddle.int32)
555 556 557 558 559 560 561 562 563 564 565 566
        tensor_upper = paddle.take_along_axis(
            sorted_tensor, indices_upper, axis=axis
        )
        tensor_below = paddle.take_along_axis(
            sorted_tensor, indices_below, axis=axis
        )
        weights = index - indices_below.astype('float64')
        out = paddle.lerp(
            tensor_below.astype('float64'),
            tensor_upper.astype('float64'),
            weights,
        )
567 568 569 570 571
        if not keepdim:
            out = paddle.squeeze(out, axis=axis)
        else:
            out = out.reshape(out_shape)
        outputs.append(out)
572 573 574

    if len(q) > 1:
        outputs = paddle.stack(outputs, 0)
575
    else:
576 577 578 579 580 581 582 583 584 585 586
        outputs = outputs[0]

    return outputs


def quantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input along the specified axis.
    If any values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
587
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

            import paddle

612 613 614 615 616 617 618
            y = paddle.arange(0, 8 ,dtype="float32").reshape([4, 2])
            # Tensor(shape=[4, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0., 1.],
            #         [2., 3.],
            #         [4., 5.],
            #         [6., 7.]])

619
            y1 = paddle.quantile(y, q=0.5, axis=[0, 1])
620 621
            # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        3.50000000)
622 623

            y2 = paddle.quantile(y, q=0.5, axis=1)
624 625
            # Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [0.50000000, 2.50000000, 4.50000000, 6.50000000])
626 627

            y3 = paddle.quantile(y, q=[0.3, 0.5], axis=0)
628 629 630
            # Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[1.80000000, 2.80000000],
            #         [3.        , 4.        ]])
631

632
            y[0,0] = float("nan")
633
            y4 = paddle.quantile(y, q=0.8, axis=1, keepdim=True)
634 635 636 637 638
            # Tensor(shape=[4, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[nan       ],
            #         [2.80000000],
            #         [4.80000000],
            #         [6.80000000]])
639 640 641 642 643 644 645 646 647 648 649

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=False)


def nanquantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input as if NaN values in input did not exist.
    If all values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
650
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

            import paddle

675
            x = paddle.to_tensor(
676
                [[0, 1, 2, 3, 4],
677 678 679
                    [5, 6, 7, 8, 9]],
                dtype="float32")
            x[0,0] = float("nan")
680 681

            y1 = paddle.nanquantile(x, q=0.5, axis=[0, 1])
682 683
            # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        5.)
684 685

            y2 = paddle.nanquantile(x, q=0.5, axis=1)
686 687
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [2.50000000, 7.        ])
688 689

            y3 = paddle.nanquantile(x, q=[0.3, 0.5], axis=0)
690 691 692
            # Tensor(shape=[2, 5], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[5.        , 2.50000000, 3.50000000, 4.50000000, 5.50000000],
            #         [5.        , 3.50000000, 4.50000000, 5.50000000, 6.50000000]])
693 694

            y4 = paddle.nanquantile(x, q=0.8, axis=1, keepdim=True)
695 696 697
            # Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[3.40000000],
            #         [8.20000000]])
698

699
            nan = paddle.full(shape=[2, 3], fill_value=float("nan"))
700
            y5 = paddle.nanquantile(nan, q=0.8, axis=1, keepdim=True)
701 702 703
            # Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[nan],
            #         [nan]])
704 705 706

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=True)