regularizer.py 10.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import logging
17

18
from . import framework
19
from .framework import in_dygraph_mode, _varbase_creator
C
chengduoZH 已提交
20
from . import core
21

Y
yuyang18 已提交
22
__all__ = ['L1Decay', 'L2Decay', 'L1DecayRegularizer', 'L2DecayRegularizer']
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38


class WeightDecayRegularizer(object):
    """Base class for weight decay regularizers

    Defines the common interface of weight-decay regularizers.
    Weight-decay regularizers are added only during the backward
    pass for faster regularization. They add operations to the network
    that correspond to gradient of the regularization function.
    Users should not use this class directly, but need to use one
    of its implementations
    """

    def __init__(self):
        pass

C
chengduoZH 已提交
39
    def __call__(self, param, grad, block):
40 41 42 43
        """Add corresponding weight decay operations to the network
        """
        raise NotImplementedError()

F
fengjiayi 已提交
44 45 46 47 48
    def __str__(self):
        """Debug string
        """
        raise NotImplementedError()

49 50

class L2DecayRegularizer(WeightDecayRegularizer):
51
    r""" 
52
    Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
53

54 55 56 57 58
    It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ). 
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in 
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has 
    higher priority than ``optimizer`` .
    
59
    In the implementation, the formula of L2 Weight Decay Regularization is as follows:
60 61 62 63 64 65

    .. math::

        L2WeightDecay = reg\_coeff * parameter

    Args:
66
        regularization_coeff(float, optional): regularization coeff. Default:0.0
67 68 69 70

    Examples:
        .. code-block:: python

71
            # Example1: set Regularizer in optimizer
72
            import paddle.fluid as fluid
73

74 75 76 77 78 79 80 81 82
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
83 84
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
85
                regularization=fluid.regularizer.L2Decay(
86
                    regularization_coeff=0.1))
87
            optimizer.minimize(avg_loss)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111


            # Example2: set Regularizer both in ParamAttr and optimizer
            import paddle.fluid as fluid

            l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
            l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
            x = fluid.layers.uniform_random([3,4])
            
            # set L1 regularization in fluid.ParamAttr
            w_param = fluid.ParamAttr(regularizer=l1)
            hidden1 = fluid.layers.fc(x, 8, param_attr=w_param)  # fc_0.w_0(L1), fc_0.b_0
            hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param)   # fc_1.w_0(L1), fc_1.b_0
            predict = fluid.layers.fc(hidden2, 32)    # fc_3.w_0, fc_3.b_0
            avg_loss = fluid.layers.mean(predict)

            # set L2 regularization in optimizer
            optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
            optimizer.minimize(avg_loss)
            
            # it will Print Message:
            # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already. 
            # So, the Regularization of Optimizer will not take effect for these parameters!

112 113 114 115 116 117 118
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L2DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
119
    def __call__(self, param, grad, block):
120 121 122 123 124 125 126 127 128 129 130 131
        """Add L2 weight decay ops to network

        Adds L2 weight decay ops.
        L2WeightDecay = reg_coeff * parameter

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
132
        assert isinstance(param, framework.Variable)
133
        assert isinstance(block, framework.Block)
C
chengduoZH 已提交
134

H
Hongyu Liu 已提交
135
        if framework.in_dygraph_mode():
136
            return core.ops.scale(param, "scale", self._regularization_coeff)
H
Hongyu Liu 已提交
137 138 139
        else:
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
C
chengduoZH 已提交
140

141 142 143 144 145 146
            # Append Op to calculate decay
            block.append_op(
                type='scale',
                inputs={"X": param},
                outputs={"Out": decay},
                attrs={"scale": self._regularization_coeff})
147

148
            return decay
149

F
fengjiayi 已提交
150 151 152
    def __str__(self):
        return "L2Decay, regularization_coeff=%f" % self._regularization_coeff

153 154

class L1DecayRegularizer(WeightDecayRegularizer):
155
    r"""
156 157
    Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
    
158 159 160 161 162
    It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ). 
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in 
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has 
    higher priority than ``optimizer`` .
    
163 164
    In the implementation, the formula of L1 Weight Decay Regularization is as follows:
	
165 166 167 168 169
    .. math::

        L1WeightDecay = reg\_coeff * sign(parameter)

    Args:
170
        regularization_coeff(float, optional): regularization coeff. Default:0.0.
171
	
172 173 174
    Examples:
        .. code-block:: python

175
            # Example1: set Regularizer in optimizer
176
            import paddle.fluid as fluid
177

178 179 180 181 182 183 184 185 186
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
X
Xin Pan 已提交
187 188 189 190
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
                regularization=fluid.regularizer.L1DecayRegularizer(
                    regularization_coeff=0.1))
191
            optimizer.minimize(avg_loss)
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
 

            # Example2: set Regularizer both in ParamAttr and optimizer
            import paddle.fluid as fluid

            l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
            l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
            x = fluid.layers.uniform_random([3,4])
            
            # set L1 regularization in fluid.ParamAttr
            w_param = fluid.ParamAttr(regularizer=l1)
            hidden1 = fluid.layers.fc(x, 8, param_attr=w_param)  # fc_0.w_0(L1), fc_0.b_0
            hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param)  # fc_1.w_0(L1), fc_1.b_0
            predict = fluid.layers.fc(hidden2, 32)   # fc_3.w_0, fc_3.b_0
            avg_loss = fluid.layers.mean(predict)

            # set L2 regularization in optimizer
            optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
            optimizer.minimize(avg_loss)
            
            # it will Print Message:
            # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already. 
            # So, the Regularization of Optimizer will not take effect for these parameters!

216 217 218 219 220 221 222
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L1DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
223
    def __call__(self, param, grad, block):
224 225 226 227 228 229 230 231 232 233 234 235
        """Add L1 weight decay ops to network

        Adds L1 weight decay ops.
        L1WeightDecay = reg_coeff * sign(parameter)

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
236
        assert isinstance(param, framework.Variable)
237
        assert isinstance(block, framework.Block)
C
chengduo 已提交
238

H
Hongyu Liu 已提交
239
        if framework.in_dygraph_mode():
240
            sign = block.create_var(dtype=param.dtype, shape=param.shape)
H
Hongyu Liu 已提交
241 242
            decay = block.create_var(dtype=param.dtype, shape=param.shape)
        else:
243 244
            sign = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
H
Hongyu Liu 已提交
245 246
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
C
chengduoZH 已提交
247

248
        # Append sign op
249
        block.append_op(type='sign', inputs={"X": param}, outputs={"Out": sign})
250 251 252 253

        # Append scale op to the output of sign op
        block.append_op(
            type='scale',
254
            inputs={"X": sign},
255 256 257 258
            outputs={"Out": decay},
            attrs={"scale": self._regularization_coeff})

        return decay
259

F
fengjiayi 已提交
260 261 262
    def __str__(self):
        return "L1Decay, regularization_coeff=%f" % self._regularization_coeff

263 264 265 266 267 268 269

# We short the class name, since users will use the regulaizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
Y
Yu Yang 已提交
270
#                          param_attr=fluid.regularizer.Xavier())
271 272 273 274
#
# It is no need to add a `Regularizer` as the class suffix
L1Decay = L1DecayRegularizer
L2Decay = L2DecayRegularizer