auc_op.h 4.9 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
typhoonzero 已提交
16
#include <iostream>
T
typhoonzero 已提交
17 18 19 20 21 22 23 24
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

T
auc_op  
typhoonzero 已提交
25 26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

T
typhoonzero 已提交
29
template <typename Place, typename T>
T
update  
typhoonzero 已提交
30
class AucKernel : public framework::OpKernel {
T
typhoonzero 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* inference = ctx.Input<Tensor>("Inference");
    auto* label = ctx.Input<Tensor>("Label");
    auto* auc = ctx.Output<Tensor>("AUC");

    float* auc_data = auc->mutable_data<float>(ctx.GetPlace());

    std::string curve = ctx.Attr<std::string>("curve");
    int num_thresholds = ctx.Attr<int>("num_thresholds");
    std::vector<float> thresholds_list;
    thresholds_list.reserve(num_thresholds);
    for (int i = 1; i < num_thresholds - 1; i++) {
      thresholds_list[i] = (float)i / (num_thresholds - 1);
    }
    const float kEpsilon = 1e-7;
    thresholds_list[0] = 0.0f - kEpsilon;
    thresholds_list[num_thresholds - 1] = 1.0f + kEpsilon;

T
auc_op  
typhoonzero 已提交
50 51 52 53 54 55
    size_t num_samples = inference->numel();

    const T* inference_data = inference->data<T>();
    Tensor label_casted;
    label_casted.Resize(label->dims());
    bool* label_casted_data = label_casted.mutable_data<bool>(ctx.GetPlace());
T
typhoonzero 已提交
56

T
auc_op  
typhoonzero 已提交
57 58 59 60 61
    const int* label_data = label->data<int>();
    // cast label_data to bool
    for (size_t i = 0; i < num_samples; i++) {
      label_casted_data[i] = static_cast<bool>(label_data[i]);
    }
T
typhoonzero 已提交
62

T
auc_op  
typhoonzero 已提交
63
    // Create local tensor for storing the curve: TP, FN, TN, FP
T
typhoonzero 已提交
64 65
    // TODO(typhoonzero): put these tensors in Scope
    // TODO(typhoonzero): use op to caculate these values.
T
update  
typhoonzero 已提交
66
    Tensor true_positive, false_positive, true_negative, false_negative;
T
typhoonzero 已提交
67 68 69 70 71 72

    true_positive.Resize({num_thresholds});
    false_negative.Resize({num_thresholds});
    true_negative.Resize({num_thresholds});
    false_positive.Resize({num_thresholds});

T
update  
typhoonzero 已提交
73 74 75 76
    int* tp_data = true_positive.mutable_data<int>(ctx.GetPlace());
    int* fn_data = false_negative.mutable_data<int>(ctx.GetPlace());
    int* tn_data = true_negative.mutable_data<int>(ctx.GetPlace());
    int* fp_data = false_positive.mutable_data<int>(ctx.GetPlace());
T
typhoonzero 已提交
77

T
typhoonzero 已提交
78
    for (int idx_thresh = 0; idx_thresh < num_thresholds; idx_thresh++) {
T
typhoonzero 已提交
79
      // caculate TP, FN, TN, FP for current thresh
T
typhoonzero 已提交
80
      int tp = 0, fn = 0, tn = 0, fp = 0;
T
typhoonzero 已提交
81
      for (size_t i = 0; i < num_samples; i++) {
T
auc_op  
typhoonzero 已提交
82
        if (label_casted_data[i]) {
T
typhoonzero 已提交
83
          if (inference_data[i] >= (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
84 85
            tp++;
          } else {
T
typhoonzero 已提交
86
            fn++;
T
auc_op  
typhoonzero 已提交
87 88
          }
        } else {
T
typhoonzero 已提交
89
          if (inference_data[i] >= (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
90
            fp++;
T
typhoonzero 已提交
91
          } else {
T
typhoonzero 已提交
92
            tn++;
T
typhoonzero 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
          }
        }
      }
      // store rates
      tp_data[idx_thresh] = tp;
      fn_data[idx_thresh] = fn;
      tn_data[idx_thresh] = tn;
      fp_data[idx_thresh] = fp;
    }
    // epsilon to avoid divide by zero.
    float epsilon = 1e-6;
    // Riemann sum to caculate auc.
    Tensor tp_rate, fp_rate, rec_rate;
    tp_rate.Resize({num_thresholds});
    fp_rate.Resize({num_thresholds});
    rec_rate.Resize({num_thresholds});
T
update  
typhoonzero 已提交
109 110 111
    float* tp_rate_data = tp_rate.mutable_data<float>(ctx.GetPlace());
    float* fp_rate_data = fp_rate.mutable_data<float>(ctx.GetPlace());
    float* rec_rate_data = rec_rate.mutable_data<float>(ctx.GetPlace());
T
typhoonzero 已提交
112
    for (int i = 0; i < num_thresholds; i++) {
T
update  
typhoonzero 已提交
113 114 115 116 117
      tp_rate_data[i] =
          ((float)tp_data[i] + epsilon) / (tp_data[i] + fn_data[i] + epsilon);
      fp_rate_data[i] = (float)fp_data[i] / (fp_data[i] + tn_data[i] + epsilon);
      rec_rate_data[i] =
          ((float)tp_data[i] + epsilon) / (tp_data[i] + fp_data[i] + epsilon);
T
typhoonzero 已提交
118
    }
T
typhoonzero 已提交
119
    *auc_data = 0.0f;
T
typhoonzero 已提交
120
    if (curve == "ROC") {
T
typhoonzero 已提交
121 122 123
      for (int i = 0; i < num_thresholds - 1; i++) {
        auto dx = fp_rate_data[i] - fp_rate_data[i + 1];
        auto y = (tp_rate_data[i] + tp_rate_data[i + 1]) / 2.0f;
T
typhoonzero 已提交
124 125
        *auc_data = *auc_data + dx * y;
      }
T
update  
typhoonzero 已提交
126
    } else if (curve == "PR") {
T
typhoonzero 已提交
127 128 129 130 131 132 133 134 135 136 137
      for (int i = 1; i < num_thresholds; i++) {
        auto dx = tp_rate_data[i] - tp_rate_data[i - 1];
        auto y = (rec_rate_data[i] + rec_rate_data[i - 1]) / 2.0f;
        *auc_data = *auc_data + dx * y;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle