sharding_optimizer.py 82.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16

W
wangxiaoning 已提交
17 18
from paddle.fluid import core
from paddle.fluid.optimizer import PipelineOptimizer
19 20 21 22 23 24
from paddle.static import (
    create_global_var,
    default_startup_program,
    device_guard,
)
from paddle.utils import unique_name
25

26 27 28 29 30 31 32 33 34 35
from ..utils.log_util import logger
from .common import (
    OP_ROLE_KEY,
    OP_ROLE_VAR_KEY,
    CollectiveHelper,
    OpRole,
    is_backward_op,
    is_optimizer_op,
    is_update_op,
)
36
from .meta_optimizer_base import MetaOptimizerBase
37
from .sharding import utils
38 39 40 41
from .sharding.fp16_helper import FP16Utils
from .sharding.gradient_clip_helper import GradientClipHelper
from .sharding.offload_helper import OffloadHelper
from .sharding.prune import ProgramDeps
42
from .sharding.shard import ProgramSegment, Shard
43 44
from .sharding.utils import (
    get_first_optimize_op_idx,
45
    get_grad_device,
46
    get_var_size,
47 48 49 50 51
    insert_allreduce_ops,
    insert_broadcast_ops,
    insert_cast_ops,
    insert_fill_constant_ops,
    insert_reduce_ops,
52
    insert_scale_loss_grad_ops,
53 54
    insert_sync_calc_op,
    insert_sync_comm_ops,
55
)
56
from .sharding.weight_decay_helper import WeightDecayHelper
57

58
__all__ = []
59 60 61


class ShardingOptimizer(MetaOptimizerBase):
62 63
    """Sharding Optimizer."""

64
    def __init__(self, optimizer):
65
        super().__init__(optimizer)
66 67 68 69
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
70 71
            "LarsOptimizer",
            "LambOptimizer",
M
minghaoBD 已提交
72
            "ASPOptimizer",
73 74
            # "ModelParallelOptimizer",
            # "PipelineOptimizer",
75
        ]
76
        self.meta_optimizers_black_list = []
77 78 79 80
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
81 82
        self._params = set()
        self._broadcast_vars = set()
83 84 85
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()
86 87 88 89
        self._verbose = False

        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self.mp_degree = 1
90 91 92 93 94 95 96 97 98 99 100 101 102 103

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
104
        dist_strategy.sharding_configs = {"segment_broadcast_MB": 32}
105

W
WangXi 已提交
106
    def _get_sharding_segment_strategy(self):
107
        """get
W
WangXi 已提交
108 109 110 111 112 113 114 115 116
        self._sharding_segment_strategy
        1. if by_size:    self._broadcast_MB
        2. if by_anchors: self._sharding_segment_anchors
                          self._backward_remain_anchors
                          self._forward_remain_anchors
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        segment_strategy = str(sharding_configs["sharding_segment_strategy"])
117

W
WangXi 已提交
118 119
        if segment_strategy == "segment_broadcast_MB":
            self._broadcast_MB = sharding_configs["segment_broadcast_MB"]
120 121 122
            assert (
                self._broadcast_MB > 0
            ), "segment size should larger than zero !"
W
WangXi 已提交
123 124
        elif segment_strategy == "segment_anchors":
            self._sharding_segment_anchors = sharding_configs["segment_anchors"]
125 126 127
            assert (
                len(self._sharding_segment_anchors) > 0
            ), "you should set the sharding segment anchors !"
128 129 130 131 132
            self._backward_remain_anchors = self._sharding_segment_anchors[:]
            self._forward_remain_anchors = []
        else:
            raise NotImplementedError(
                "the sharding segment strategy [{}] is not implemented".format(
133 134 135
                    str(segment_strategy)
                )
            )
W
WangXi 已提交
136 137 138
        self._sharding_segment_strategy = segment_strategy

    def _get_hybrid_degree(self):
139
        """get
W
WangXi 已提交
140 141 142 143 144 145 146 147
        self.hybrid_dp
        self.sharding_degree
        self.mp_degree
        self.pp_degree
        self.dp_degree
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
148

149
        # parallelism
W
WangXi 已提交
150 151 152 153 154 155 156
        sharding_degree = int(sharding_configs["sharding_degree"])
        mp_degree = int(sharding_configs["mp_degree"])
        pp_degree = int(sharding_configs["pp_degree"])
        dp_degree = int(sharding_configs['dp_degree'])
        global_world_size = self.role_maker._worker_num()

        assert sharding_degree > 0, "sharding degree must be larger than zero"
157 158
        # pipeline setting
        # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
W
WangXi 已提交
159 160 161
        if pp_degree > 1:
            assert strategy.pipeline is True

L
lilong12 已提交
162
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
163 164 165 166 167 168 169 170
            assert pp_degree == 2, (
                "For manually set pipeline, only " "pp_degree = 2 is supported."
            )
            assert (
                global_world_size == mp_degree * sharding_degree * dp_degree
            ), "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                global_world_size, mp_degree, sharding_degree, dp_degree
            )
L
lilong12 已提交
171
        else:
172 173 174 175 176 177 178 179 180 181
            assert (
                global_world_size
                == mp_degree * sharding_degree * pp_degree * dp_degree
            ), "global work size [{}], mp_degree [{}], sharding_degree [{}], pp_degree [{}], dp_degree [{}].".format(
                global_world_size,
                mp_degree,
                sharding_degree,
                pp_degree,
                dp_degree,
            )
182

J
JZ-LIANG 已提交
183
        # FIXME (JZ-LIANG) deprecated hybrid_dp
W
WangXi 已提交
184
        if sharding_configs["hybrid_dp"]:
185
            logger.warning(
W
WangXi 已提交
186
                "[hybrid_dp] API setting is deprecated. Now when "
187 188
                "dp_degree >= 2, its will be in hybrid dp mode automatically"
            )
W
WangXi 已提交
189 190 191 192 193 194 195 196 197
            assert dp_degree >= 1

        self.hybrid_dp = True if dp_degree > 1 else False
        self.sharding_degree = sharding_degree
        self.mp_degree = mp_degree
        self.pp_degree = pp_degree
        self.dp_degree = dp_degree

    def _get_hybrid_dp_mode(self):
198
        """get
199 200
        self.hybrid_dp_mode = 'pp_hybrid_dp' or 'sharding_hybrid_dp'
        self.gradient_merge_mode = 'pp_gm' or 'sharding_gm'
W
WangXi 已提交
201 202
        self._gradient_merge_acc_step
        self.pp_allreduce_in_optimize
203
        self._optimizer_sharding
W
WangXi 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs

        # NOTE (JZ-LIANG)
        # There 2 kind of modes for gradient-merge and hybrid-dp in mixed parallelism [sharding] and [pipeline].
        # We distinguish this two modes since the gm/hybrid-dp related allreduce should be insert in different place
        # according different mode to have best performance:
        # sharding: communication within node, and therefore should insert within backward segment
        #           to overlap with bw calc, conduct every micro step.
        # pipeline: communication across nodes, and therefore should insert in update segment,
        #           conduct just once per global step.
        dp_mode = None
217 218 219
        # dp here is the pure dp as the outest parallelism
        if self.hybrid_dp:
            if self.pp_degree > 1:
W
WangXi 已提交
220
                dp_mode = "pp_hybrid_dp"
221
            else:
222 223
                assert self.sharding_degree > 1, (
                    "by now we only support five kind of hybrid dp: sharding_hybrid_dp, "
W
WangXi 已提交
224
                    "mp_sharding_hybrid_dp, pp_hybrid_dp, mp_sharding_pp_hybrid_dp, sharding_pp_hybrid_dp."
225
                )
W
WangXi 已提交
226
                dp_mode = "sharding_hybrid_dp"
227

228
        # gradient merge
W
WangXi 已提交
229 230
        gm_mode = None
        gm_acc_step = int(sharding_configs["gradient_merge_acc_step"])
231
        if self.pp_degree <= 1:
W
WangXi 已提交
232
            gm_mode = "sharding_gm"
233
            self._grad2merged_grad = {}
234
        else:
W
WangXi 已提交
235 236
            gm_mode = "pp_gm"
            gm_acc_step = strategy.pipeline_configs['accumulate_steps']
237
            gradient_scale_configs = strategy.gradient_scale_configs
238 239 240 241 242 243 244
            assert gradient_scale_configs['scale_strategy'] == 'avg', (
                'For pipeline mode, the '
                'gradient scale mode should '
                'be "avg", but got {}'.format(
                    gradient_scale_configs['scale_strategy']
                )
            )
245 246 247 248
            # Note (Yuang Liu): this avg_loss flag determines where to do the average op for grad merge.
            # If True, will do sum firstly for gradient merge, then do scale by gm_acc_step.
            # If False, will scale loss by gm_acc_step first, then do sum for gradient merge.
            self.scale_gradient = gradient_scale_configs['scale_gradient']
W
WangXi 已提交
249
        if gm_acc_step > 1:
250 251 252 253 254
            logger.info(
                "Gradient merge in [{}], acc step = [{}]".format(
                    gm_mode, gm_acc_step
                )
            )
255

256 257 258
        optimizer_sharding = False
        # TODO(wangxi): need support dp_as_opt_sharding with sharding
        #               need support without pp in future
259 260 261 262 263 264
        if (
            self.sharding_degree == 1
            and self.dp_degree > 1
            and sharding_configs['_dp_as_optimizer_sharding']
            and self.pp_degree > 1
        ):
265 266
            optimizer_sharding = True

W
WangXi 已提交
267 268 269
        self.hybrid_dp_mode = dp_mode
        self.gradient_merge_mode = gm_mode
        self._gradient_merge_acc_step = gm_acc_step
270
        self._optimizer_sharding = optimizer_sharding
271 272

        # this feature is design for ascend, and should NOT be used in GPU training
W
WangXi 已提交
273
        self.pp_allreduce_in_optimize = sharding_configs[
274 275
            "pp_allreduce_in_optimize"
        ]
276

277 278 279
    def _inner_opt_minimize(
        self, loss, startup_program, parameter_list, no_grad_set
    ):
W
WangXi 已提交
280 281
        pipeline_configs = self.user_defined_strategy.pipeline_configs

282 283
        if self.inner_opt is None:
            raise ValueError(
284 285
                "self.inner_opt of ShardingOptimizer should not be None."
            )
286 287

        if self.pp_degree > 1:
W
wangxiaoning 已提交
288
            pp_optimizer = PipelineOptimizer(
289 290
                self.inner_opt, self._gradient_merge_acc_step
            )
W
WangXi 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
            self._pp_optimizer = pp_optimizer

            global_rank = self.role_maker._worker_index()
            schedule_mode = pipeline_configs['schedule_mode']

            pipeline_opt = {
                'schedule_mode': schedule_mode,
                'micro_batch_size': pipeline_configs['micro_batch_size'],
                'local_rank': self.pp_rank,
                'global_rank': global_rank,
                'use_sharding': True,
                # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
                'ring_id': 20,
                'global_ring_id': 3,
                'mp_degree': self.mp_degree,
                'mp_rank': global_rank % self.mp_degree,
307
                'scale_gradient': self.scale_gradient,
W
WangXi 已提交
308
            }
309 310
            main_program = loss.block.program
            main_program._pipeline_opt = pipeline_opt
311

312 313 314 315 316 317 318 319 320
            (
                optimize_ops,
                params_grads,
                program_list,
                self.pipeline_pair,
                self.pp_ring_map,
            ) = pp_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set
            )
W
WangXi 已提交
321
            assert self.pp_degree == len(program_list)
322 323
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
324 325
                loss, startup_program, parameter_list, no_grad_set
            )
326 327 328

        if startup_program is None:
            startup_program = default_startup_program()
329 330 331

        if self.pp_degree > 1:
            startup_program = startup_program._pipeline_opt['startup_program']
W
WangXi 已提交
332
            print("pp_rank:", self.pp_rank)
L
lilong12 已提交
333
            if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
334 335 336
                main_program = program_list[
                    int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
                ]
L
lilong12 已提交
337 338
            else:
                main_program = program_list[self.pp_rank]
339 340 341 342 343 344 345 346 347 348 349
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads
        else:
            main_block = loss.block

350 351 352 353
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

354 355 356 357 358
        if self.pp_degree > 1:
            pp_optimizer._rename_gradient_var_name(main_block)
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))

W
WangXi 已提交
359
        return optimize_ops, params_grads
360

W
WangXi 已提交
361
    def _apply_sharding_pass(self, params_grads):
362 363
        if self.sharding_degree == 1:
            return
W
WangXi 已提交
364 365 366

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
367

W
WangXi 已提交
368
        # step1: build shard
369 370 371
        self._build_shard(
            params_grads, self.sharding_rank, self.sharding_degree
        )
372

W
WangXi 已提交
373 374
        # step2: split_program
        self._split_program(main_block)
375

W
WangXi 已提交
376 377 378 379
        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()
380

W
WangXi 已提交
381
        # step4: remove unneeded ops and vars from block
382
        self._prune_main_program(
383 384 385 386
            main_block,
            self._shard,
            [self.mp_ring_id, self.sharding_ring_id, self.pp_ring_id],
        )
387 388 389
        self._prune_startup_program(startup_block, self._shard)

    def _apply_opt_sharding_pass(self, params_grads):
390 391 392
        """outer dp as optimizer sharding"""
        if self._optimizer_sharding is False:
            return
393 394 395

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
396

397 398 399 400 401 402 403 404 405
        # step1: build shard
        self._build_shard(params_grads, self.dp_rank, self.dp_degree)

        # NOTE(wangxi): prune_main_program will prune cast if not add this
        for param, grad in params_grads:
            self._reduced_grads_to_param[grad.name] = param.name

        # step4: remove unneeded ops and vars from block
        self._prune_main_program(
406 407 408 409
            main_block,
            self._shard,
            [self.mp_ring_id, self.pp_ring_id, self.dp_ring_id],
        )
410 411 412
        self._prune_startup_program(startup_block, self._shard)

    def _insert_allreduce_for_pp(self, params_grads):
413 414
        if self.pp_degree == 1:
            return
415

W
WangXi 已提交
416
        strategy = self.user_defined_strategy
417
        sharding_configs = strategy.sharding_configs
418

W
WangXi 已提交
419 420 421 422 423 424 425 426 427 428 429 430
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # sharding-pp related logic
        # pp_optimizer._rename_gradient_var_name(main_block)
        # crop ops
        if self.sharding_degree > 1:
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
431 432
                        main_block._remove_op(idx)

W
WangXi 已提交
433
            for idx, op in reversed(list(enumerate(main_block.ops))):
434 435
                if op.type != 'cast':
                    continue
W
WangXi 已提交
436
                in_name = op.input_arg_names[0]
437 438 439
                if in_name not in self._params:
                    continue
                # if self._shard.has_param(param_name): continue
W
WangXi 已提交
440 441 442
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)

443 444 445 446 447
        if self._optimizer_sharding:
            # TODO(wangxi): support fp16_allreduce with optimizer sharding
            strategy.fp16_allreduce = False

        shard = self._shard if self._optimizer_sharding else None
W
WangXi 已提交
448
        accumulated_grad_names = self._pp_optimizer._accumulate_gradients(
449 450
            main_block, strategy=strategy, shard=shard
        )
451 452

        len_of_ops = len(main_block.ops)
453 454
        if self.scale_gradient:
            self._avg_grad_merge_after_sum(main_block, accumulated_grad_names)
455 456
        first_optimize_op_index = get_first_optimize_op_idx(main_block)

W
WangXi 已提交
457
        if self.pp_allreduce_in_optimize:
458
            logger.info(
459
                f"Pipeline Persistable grad is {accumulated_grad_names}"
460
            )
461 462 463 464
            # FIXME(wangxi): accumulated_grad get from pipeline is not
            #  include sharding's param@BroadCast grad when
            #  pp_allreduce_in_optimize
            accumulated_grad_names = insert_reduce_ops(
W
WangXi 已提交
465 466 467 468 469 470
                main_block,
                first_optimize_op_index,
                self.sharding_ring_id,
                accumulated_grad_names,
                self._shard,
                core.op_proto_and_checker_maker.OpRole.Optimize,
471
                use_calc_stream=True,
472 473
                rank=self.sharding_rank,
            )
474

475
            logger.info(f"PP-Sharding grad is {accumulated_grad_names}")
476
            first_optimize_op_index += len(main_block.ops) - len_of_ops
477 478
            len_of_ops = len(main_block.ops)

479 480 481 482 483 484 485 486 487 488
        if self._optimizer_sharding:
            accumulated_grad_names = utils.insert_reduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
489 490
                strategy=strategy,
            )
491
            logger.info(f"Optimizer grad in this rank {accumulated_grad_names}")
492
            first_optimize_op_index += len(main_block.ops) - len_of_ops
493 494
            len_of_ops = len(main_block.ops)

495 496
            # NOTE(wangxi): we fused after optimize_cast
            optimize_cast = sharding_configs['optimize_cast']
497 498 499
            optimizer_param = utils.insert_broadcast_param_ops(
                main_block,
                len_of_ops,
500 501
                self.dp_ring_id,
                [x[0].name for x in params_grads],
502 503 504 505
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
506 507
                strategy=None if optimize_cast else strategy,
            )
508
            logger.info(f"Optimizer param in this rank {optimizer_param}")
509
            if not strategy.fuse_grad_merge and not optimize_cast:
510 511
                assert len(accumulated_grad_names) == len(optimizer_param)
        elif self.hybrid_dp and self.hybrid_dp_mode == "pp_hybrid_dp":
512 513 514 515 516 517 518
            insert_allreduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                core.op_proto_and_checker_maker.OpRole.Optimize,
                use_calc_stream=True,
519 520 521
                user_defined_strategy=strategy,
            )
            first_optimize_op_index += len(main_block.ops) - len_of_ops
522 523 524
            len_of_ops = len(main_block.ops)

        # FIXME(wangxi): if fp16_allreduce, put cast fp16->fp32 to there?
525

526
    def _avg_grad_merge_after_sum(self, main_block, accumulated_grad_names):
527 528 529 530 531 532
        if (
            self.user_defined_strategy.amp
            and self.user_defined_strategy.amp_configs[
                'use_dynamic_loss_scaling'
            ]
        ):
533 534 535 536 537 538 539 540 541 542
            # For AMP, if using dynamic loss scaling the avg
            # operation can be simple done by modify the LossScaling op.
            for idx, op in enumerate(main_block.ops):
                if op.type == 'check_finite_and_unscale':
                    loss_scale_name = op.input('Scale')[0]
                    loss_scaling_var = main_block.var(loss_scale_name)
                    loss_scale_tmp_var_name = loss_scale_name + '@TMP'
                    loss_scale_tmp_var = main_block.create_var(
                        name=loss_scale_tmp_var_name,
                        shape=loss_scaling_var.shape,
543 544
                        dtype=loss_scaling_var.dtype,
                    )
545 546 547 548 549 550 551 552 553
                    main_block._insert_op_without_sync(
                        idx,
                        type='scale',
                        inputs={'X': loss_scaling_var},
                        outputs={'Out': loss_scale_tmp_var},
                        attrs={
                            'scale': self._gradient_merge_acc_step,
                            'bias': 0.0,
                            'bias_after_scale': False,
554 555 556
                            OP_ROLE_KEY: OpRole.Optimize,
                        },
                    )
557 558 559 560 561 562 563 564 565 566
                    op._rename_input(loss_scale_name, loss_scale_tmp_var_name)
                    break
        else:
            # For pp, do the avg operation for gradient merge after merging
            # the gradient to meet the logic for gradient merge under pure dp.
            tmp_first_opt_idx = None
            for idx, op in enumerate(main_block.ops):
                if is_optimizer_op(op) and op.type != 'c_sync_comm_stream':
                    tmp_first_opt_idx = idx
                    break
567 568 569
            assert (
                tmp_first_opt_idx is not None
            ), 'Occurs some errors, no optimize ops'
570 571 572 573 574 575 576 577 578 579
            for grad in accumulated_grad_names:
                main_block._insert_op_without_sync(
                    tmp_first_opt_idx,
                    type='scale',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={
                        'scale': 1.0 / self._gradient_merge_acc_step,
                        'bias': 0.0,
                        'bias_after_scale': False,
580 581 582
                        OP_ROLE_KEY: OpRole.Optimize,
                    },
                )
583

W
WangXi 已提交
584
    def _adapt_amp_clip_without_sharding(self):
585 586
        # if not use sharding, adapt amp/clip, for remain parallelism.
        # cast --> amp --> clip --> opt
587 588 589 590
        if self.sharding_degree > 1:
            return
        if self._optimizer_sharding:
            return
591

W
WangXi 已提交
592 593 594 595
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # amp inf_var & clip global_norm_var
596

597 598
        rings = [self.mp_ring_id, self.pp_ring_id]
        # FIXME(wangxi): some problem with NPU found_finite, need sync with DP
K
Kim Yann 已提交
599
        if core.is_compiled_with_custom_device('npu'):
600 601
            rings += [self.dp_ring_id]
        FP16Utils.sync_amp_check_nan_inf(main_block, rings)
602

W
WangXi 已提交
603
        gradientclip_helper = GradientClipHelper(None)
604 605 606
        gradientclip_helper.sync_global_norm(
            main_block, [self.mp_ring_id, self.pp_ring_id], self.mp_rank
        )
W
WangXi 已提交
607 608 609 610 611

    def _insert_loss_grad_scale_op(self):
        main_block = self._main_program.global_block()

        # step6: loss div dp_degree
612 613 614
        global_dp_degree = self.sharding_degree * self.dp_degree
        assert int(global_dp_degree) == global_dp_degree
        if global_dp_degree > 1:
615
            insert_scale_loss_grad_ops(main_block, scale=global_dp_degree)
616

617 618
        main_block._sync_with_cpp()

619
    def _apply_optimize_offload_pass(self, params_grads):
W
WangXi 已提交
620 621 622 623 624
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

625
        mp_ring_id = self.mp_ring_id if self.mp_degree > 1 else None
626
        dp_ring_id = self.dp_ring_id if self.dp_degree > 1 else None
627 628 629
        offload_helper = OffloadHelper(
            mp_ring_id=mp_ring_id, dp_ring_id=dp_ring_id
        )
630

W
WangXi 已提交
631 632 633 634
        # optimize offload should be enable while gradient merge is enable and
        # acc_step is quite large (e.g. >> 100). Since its memcpy could not be
        # overlap with calc, otherwise it will slower down training severely.
        if sharding_configs["optimize_offload"]:
635
            logger.info("Sharding with optimize offload !")
636
            offload_helper.offload(main_block, startup_block)
637
            # The optimize_cast is already included in offload_fp32param
638
            offload_helper.offload_fp32param(main_block, startup_block)
639 640 641 642
        elif sharding_configs['optimize_cast']:
            logger.info("Sharding with optimize cast !")
            # NOTE(wangxi): optimize_cast will persist fp16 param, it
            # will take more memory, but will be faster. Trade space for time.
643 644
            if self._optimizer_sharding:
                offload_helper.opt_sharding_cast_fp32param(
645 646
                    main_block, startup_block, [x[0].name for x in params_grads]
                )
647
                # NOTE(wangxi): fused after optimize_cast
648 649 650
                utils.fuse_opt_broadcast_param_ops(
                    main_block, dp_ring_id, self._shard, strategy=strategy
                )
651
            else:
652
                offload_helper.cast_fp32param_in_optimize(
653 654
                    main_block, startup_block
                )
655

W
WangXi 已提交
656 657 658
    def _dump_program_for_debug(self):
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
659 660 661
        with open(
            "start_sharding_%d" % self.role_maker._worker_index(), 'w'
        ) as f:
W
WangXi 已提交
662
            f.writelines(str(startup_block.program))
663 664 665
        with open(
            "main_sharding_%d" % self.role_maker._worker_index(), 'w'
        ) as f:
W
WangXi 已提交
666 667
            f.writelines(str(main_block.program))

668 669 670
    def minimize_impl(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
W
WangXi 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1

        self._get_sharding_segment_strategy()
        self._get_hybrid_degree()
        self._get_hybrid_dp_mode()

        # config sharding & dp groups
        self._build_groups()

        # inner optimize minimize
        optimize_ops, params_grads = self._inner_opt_minimize(
685 686
            loss, startup_program, parameter_list, no_grad_set
        )
W
WangXi 已提交
687 688 689 690 691

        self._init_comm()

        self._apply_sharding_pass(params_grads)

692 693 694
        self._apply_opt_sharding_pass(params_grads)

        self._insert_allreduce_for_pp(params_grads)
W
WangXi 已提交
695 696 697 698 699 700

        self._adapt_amp_clip_without_sharding()

        # loss div dp_degree
        self._insert_loss_grad_scale_op()

701
        # apply optimize offload or optimize cast
702
        self._apply_optimize_offload_pass(params_grads)
W
WangXi 已提交
703

704
        # step6: (optional) sharding gradient merge
W
WangXi 已提交
705
        self._sharding_gradient_merge()
706 707 708 709 710 711

        # # check op dependecy
        # FIXME (JZ-LIANG) enable checking in future.
        # check_broadcast(main_block)
        # check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                     self.dp_ring_id)
712

W
WangXi 已提交
713 714 715
        # NOTE(JZ-LIANG) ensure in both sharding_hybrid_dp & pp_hybrid_dp
        # init param broadcast should be called after startup pruning
        self._initialization_broadcast()
716

717 718 719 720
        # NOTE(wangxi): if param is not persistable, program.clone will
        #  failed, so we remove no persistable param, recreate param as a var
        self._recreate_not_persist_param_as_var()

W
WangXi 已提交
721
        self._dump_program_for_debug()
722

723
        # GPU need to wait server ready, GPU and NPU is Layered connection
K
Kim Yann 已提交
724
        if not core.is_compiled_with_custom_device('npu'):
725
            self._wait()
726 727
        return optimize_ops, params_grads

728 729 730 731 732 733
    def _init_pair_comm(self, pair, ring_id):
        pp_group_endpoints = [
            self.pp_group_endpoints[pair[0]],
            self.pp_group_endpoints[pair[1]],
        ]
        pp_rank = 0 if self.pp_rank == pair[0] else 1
L
lilong12 已提交
734
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
735 736 737 738 739 740 741 742 743
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                pp_group_endpoints,
                pp_rank,
                ring_id,
                False,
                sync=False,
            )
744 745 746 747 748 749 750 751 752 753

    def _init_npu_pipeline_comm(self, startup_block):
        assert (self.pp_degree % 2) == 0

        max_ring_id = -1
        my_pair = []
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            max_ring_id = max(max_ring_id, ring_id)
754
            logger.info(f"pp pair:{pair}, ring_id: {ring_id}")
755 756 757 758 759

            if self.pp_rank in pair:
                my_pair.append(pair)

        # for example: self.pp_rank=2, self.pp_degree=4
760 761 762 763
        send_to_next_pair = (
            self.pp_rank,
            (self.pp_rank + 1) % self.pp_degree,
        )  # 2->3
764
        recv_from_next_pair = (
765 766 767
            (self.pp_rank + 1) % self.pp_degree,
            self.pp_rank,
        )  # 3->2
768
        recv_from_prev_pair = (
769 770
            (self.pp_rank - 1 + self.pp_degree) % self.pp_degree,
            self.pp_rank,
771
        )  # 1->2
772 773 774 775
        send_to_prev_pair = (
            self.pp_rank,
            (self.pp_rank - 1 + self.pp_degree) % self.pp_degree,
        )  # 2->1
776 777 778 779 780 781 782 783

        even = (self.pp_rank % 2) == 0

        # 1. even send to next, odd recv from prev, 0->1, 2->3
        pair = send_to_next_pair if even else recv_from_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
784
        logger.info(f"pair0(even->odd): pp pair:{pair}, ring_id: {ring_id}")
785 786 787 788 789 790

        # 2. even recv from next, odd send to prev, 1->0, 3->2
        pair = recv_from_next_pair if even else send_to_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
791
        logger.info(f"pair1(even<-odd): pp pair:{pair}, ring_id: {ring_id}")
792 793 794 795 796

        # if pp_degree is 2, only need pair(0->1, 1->0)
        if self.pp_degree > 2:
            # 3. odd send to next, even recv from prev, 1->2, 3->0
            pair = send_to_next_pair if not even else recv_from_prev_pair
797 798 799
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1], max_ring_id + 1
            )  # 3->0 not in pp_ring_map
800 801 802
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
803 804 805 806 807
            logger.info(
                "pair2(odd->even): pp pair:{}, ring_id: {}".format(
                    pair, ring_id
                )
            )
808 809 810

            # 4. odd recv from next, even send to prev, 2->1, 0->3
            pair = recv_from_next_pair if not even else send_to_prev_pair
811 812 813
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1], max_ring_id + 2
            )  # 0->3 not in pp_ring_map
814 815 816
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
817 818 819 820 821
            logger.info(
                "pair3(odd<-even): pp pair:{}, ring_id: {}".format(
                    pair, ring_id
                )
            )
822

823 824 825 826
        assert len(my_pair) == 0, (
            "Current pipeline does not support cross stage communication, "
            "please check unexpected pair {}".format(my_pair)
        )
827 828 829

    def _init_pipeline_comm(self, startup_block):
        # TODO (JZ-LIANG) to unify pp_rank_ and pp_rank
L
lilong12 已提交
830
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
831 832 833 834 835 836 837 838 839
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.pp_group_endpoints,
                self.pp_rank,
                self.pp_ring_id,
                False,
                sync=False,
            )
840

K
Kim Yann 已提交
841
        if core.is_compiled_with_custom_device('npu'):
842 843 844 845 846 847 848
            self._init_npu_pipeline_comm(startup_block)
            return

        # GPU
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
849
            logger.info(f"pp pair:{pair}, ring_id: {ring_id}")
850 851 852
            if self.pp_rank in pair:
                self._init_pair_comm(pair, ring_id)

853
    def _init_comm(self):
854
        # sync var
855 856
        startup_block = self._startup_program.global_block()

857
        # mp ring
858
        if self.mp_degree > 1:
859 860 861 862 863 864 865 866 867
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.mp_group_endpoints,
                self.mp_rank,
                self.mp_ring_id,
                False,
                sync=False,
            )
868

869
        # sharding ring
870 871 872 873 874 875 876 877
        if self.sharding_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.sharding_group_endpoints,
                self.sharding_rank,
                self.sharding_ring_id,
                False,
878 879
                sync=False,
            )
880

881 882
        # pp ring
        if self.pp_degree > 1:
883
            self._init_pipeline_comm(startup_block)
884 885

        # pure dp ring
886
        if self.dp_degree > 1:
887 888 889 890 891 892 893 894 895
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.dp_group_endpoints,
                self.dp_rank,
                self.dp_ring_id,
                False,
                sync=False,
            )
896

897 898
        startup_block._sync_with_cpp()

899
    def _build_shard(self, params_grads, shard_rank, shard_size):
900
        # step 2: split params
901
        self._params = {x[0].name for x in params_grads}
902
        self._shard.setup(params_grads, shard_rank, shard_size)
903 904 905

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
906 907
            self._main_program.global_block()
        )
908

909 910 911
    def _wait(
        self,
    ):
912 913 914
        endpoints = self.global_endpoints[:]
        current_endpoint = endpoints[self.global_rank]
        if self.global_rank == 0:
915 916
            self._collective_helper._wait(current_endpoint, endpoints)

917 918 919 920 921 922 923 924
    def collect_segment(self, segment, op_idx, block):
        segment._start_idx = op_idx + 1
        self._segments.insert(0, segment)
        new_segment = ProgramSegment(block)
        new_segment._end_idx = op_idx + 1

        return new_segment

925 926 927 928 929
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
930

931
        var2broadcast_time = {}
932 933 934 935
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
936
            assert int(op.attr('op_role')) != int(OpRole.Optimize)
937 938 939 940 941 942 943 944 945 946 947 948 949
            if self._sharding_segment_strategy == "segment_broadcast_MB":
                if segment._param_mem >= self._broadcast_MB:
                    segment = self.collect_segment(segment, op_idx, block)

            elif self._sharding_segment_strategy == "segment_anchors":
                if int(op.attr('op_role')) == int(OpRole.Backward):
                    for input_name in op.desc.input_arg_names():

                        # NOTE (JZ-LIANG) naive rule to support amp, if amp change, should modify here accordingly
                        if self.user_defined_strategy.amp:
                            if ".cast_fp16@GRAD" not in input_name:
                                continue
                            else:
950 951 952
                                input_name = input_name[
                                    : input_name.find(".cast_fp16@GRAD")
                                ]
953 954

                        if input_name in self._backward_remain_anchors:
955
                            segment = self.collect_segment(
956 957 958 959 960 961 962
                                segment, op_idx, block
                            )
                            assert (
                                input_name not in self._forward_remain_anchors
                            ), "segment anchor [{}] met twice !".format(
                                input_name
                            )
963 964 965 966 967
                            self._backward_remain_anchors.remove(input_name)
                            self._forward_remain_anchors.append(input_name)
                elif int(op.attr('op_role')) == int(OpRole.Forward):
                    for output_name in op.desc.output_arg_names():
                        if output_name in self._forward_remain_anchors:
968
                            segment = self.collect_segment(
969 970
                                segment, op_idx, block
                            )
971
                            self._forward_remain_anchors.remove(output_name)
972 973 974 975 976 977 978 979 980 981 982 983 984 985

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
986 987 988
                    broadcast_var_name = unique_name.generate(
                        input_name + "@BroadCast"
                    )
989
                    segment._fill_constant_vars.append(broadcast_var_name)
990 991 992 993 994

                # (JZ-LIANG) should use Param base name ?
                broadcast_var_base_name = input_name
                if "subprog" in broadcast_var_base_name:
                    # remove suffix
995 996 997
                    broadcast_var_base_name = broadcast_var_base_name[
                        : broadcast_var_base_name.find(".subprog")
                    ]
998

999 1000 1001
                var2broadcast_time[broadcast_var_base_name] = (
                    var2broadcast_time.get(broadcast_var_base_name, 0) + 1
                )
1002

1003
                segment._param2broadcast[input_name] = broadcast_var_name
1004
                segment._broadcast_vars.append(
1005 1006
                    (broadcast_var_name, self._shard.device(input_name))
                )
1007
                segment._param_mem += get_var_size(
1008 1009
                    self._main_program.global_block().var(input_name)
                )
1010 1011

            # find reduce vars
1012 1013 1014 1015
            if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
                # place pipeline gradient allreduce in optimize
                pass
            else:
1016
                if is_backward_op(op) and OP_ROLE_VAR_KEY in op.attr_names:
1017 1018 1019 1020
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
1021 1022 1023 1024
                            param, reduced_grad = (
                                op_role_var[i],
                                op_role_var[i + 1],
                            )
1025
                            segment._allreduce_vars.append(reduced_grad)
1026 1027 1028
                            assert (
                                reduced_grad not in self._reduced_grads_to_param
                            )
1029
                            self._reduced_grads_to_param[reduced_grad] = param
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
1041 1042

        if self._sharding_segment_strategy == "segment_anchors":
1043 1044
            assert (
                len(self._forward_remain_anchors) == 0
1045
            ), f"remain anchors {self._forward_remain_anchors}"
1046 1047
            assert (
                len(self._backward_remain_anchors) == 0
1048
            ), f"remain anchors {self._backward_remain_anchors}"
1049 1050

        if self._verbose:
1051 1052 1053 1054 1055 1056 1057 1058
            for varname in sorted(
                var2broadcast_time, key=var2broadcast_time.get, reverse=True
            ):
                logger.info(
                    "Sharding broadcast: [{}] times [{}]".format(
                        var2broadcast_time[varname], varname
                    )
                )
1059
            for idx_ in range(len(self._segments)):
1060
                logger.info(f"segment [{idx_}] :")
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
                logger.info(
                    "start op: [{}]  [{}]".format(
                        block.ops[self._segments[idx_]._start_idx].desc.type(),
                        block.ops[
                            self._segments[idx_]._start_idx
                        ].desc.input_arg_names(),
                    )
                )
                logger.info(
                    "end   op: [{}]  [{}]".format(
                        block.ops[self._segments[idx_]._end_idx].desc.type(),
                        block.ops[
                            self._segments[idx_]._end_idx
                        ].desc.input_arg_names(),
                    )
                )
1077 1078
        return

1079
    def _prune_main_program(self, block, shard, rings):
1080 1081 1082
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
1083 1084 1085 1086 1087

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
1088

1089 1090
        """
        weightdecay_helper = WeightDecayHelper()
1091
        weightdecay_helper.prune_weight_decay(block, shard)
1092 1093

        # FIXME(wangxi): mp should prune duplicated param_grads
1094 1095 1096
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        # amp could use global group for sync
1097
        FP16Utils.prune_fp16(block, shard, self._reduced_grads_to_param, rings)
1098

1099
        # clipbyglobalnorm should only use the Model paramllelism group (mp-sharding-pp)
1100
        gradientclip_helper = GradientClipHelper(None)
1101
        gradientclip_helper.prune_gradient_clip(block, shard, rings)
1102 1103 1104 1105 1106 1107

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
1108
            # FIXME(wangxi): need use grads, pipeline grad is @GRAD@MERGE
1109 1110 1111 1112 1113
            if (
                op.type == "c_allreduce_sum"
                and op.attr('use_model_parallel') is False
            ):
                assert len(output_names) == 1
1114 1115 1116
                output_name = output_names[0]
                reduced_grads.append(output_name)

1117
        # prune optimizer state and param
1118 1119
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
1120
            if shard.is_opti_var(var_name) and not shard.has_opt_var(var_name):
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
1131 1132 1133 1134
                "c_allreduce_sum",
                "c_sync_comm_stream",
                "c_calc_comm_stream",
                "c_gen_nccl_id",
1135
                "c_gen_bkcl_id",
1136 1137 1138
                "c_comm_init",
                'send_v2',
                'recv_v2',
1139 1140 1141
            ]:
                pass
            elif op.type == "conditional_block":
1142
                assert op.desc.has_attr("sub_block")
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
1158 1159
                    list(enumerate(subblock_deps._block.ops))
                ):
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
1171 1172
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
1173
                if program_deps.should_remove_op(idx):
1174
                    # NOTE(wangxi): need reserve all param in optimizer_sharding
1175 1176 1177
                    reserved_vars = (
                        self._params if self._optimizer_sharding else None
                    )
1178
                    program_deps.remove_op(idx, reserved_vars)
1179

1180
        # NOTE (JZ-LIANG) revise and unify logic here
1181
        # sharding support fp16_allreduce logic
1182 1183 1184 1185 1186 1187
        block._sync_with_cpp()
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
1188 1189
                    if block.has_var(var_name):
                        reserved_x.append(var_name)
1190
                op.desc.set_input('X', reserved_x)
1191 1192 1193 1194 1195
        block._sync_with_cpp()
        return

    def _add_broadcast_allreduce(self, block):
        """
1196 1197
        add broadcast allreduce op
        if enable gradient_merge, insert related ops
1198

1199
        if combined with pipeline(grad accumulate),
1200
        the grad allreduce should be done in optimize role
1201 1202 1203
        """
        if len(self._segments) < 1:
            return
1204
        # sharding
1205 1206 1207 1208 1209 1210 1211
        if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

        # NOTE (JZ-LIANG) revise and unify logic here
        # fix the _end_idx for segments[-1] if pp is used.
        new_end_idx = self._segments[-1]._end_idx
1212 1213 1214 1215 1216
        for idx in range(
            self._segments[-1]._end_idx - 1,
            self._segments[-1]._start_idx - 1,
            -1,
        ):
1217 1218
            op = block.ops[idx]
            if op.type == "fill_constant" or op.type == "sum":
1219 1220
                if "MERGED" in op.output_arg_names[0]:
                    new_end_idx = idx + 1
1221
            elif op.type == "cast":
1222 1223
                if "@TMP" in op.output_arg_names[0]:
                    new_end_idx = idx + 1
1224 1225
        self._segments[-1]._end_idx = new_end_idx

1226
        if self._segments[-1]._allreduce_vars:
1227
            shard_allredue_vars = self._shard.filter_grads(
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
                self._segments[-1]._allreduce_vars
            )
            if (
                self.gradient_merge_mode != "sharding_gm"
                or self._gradient_merge_acc_step <= 1
            ):
                if (
                    self.hybrid_dp
                    and self.hybrid_dp_mode == "sharding_hybrid_dp"
                    and len(shard_allredue_vars) >= 1
                ):
                    insert_sync_comm_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                    )
1245 1246 1247 1248 1249
                    insert_allreduce_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
1250 1251
                        user_defined_strategy=self.user_defined_strategy,
                    )
1252
            # gradient merge
1253 1254 1255 1256
            elif (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
1257
                self.create_persistable_gradients_and_insert_merge_ops(
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
                    block,
                    self._startup_program.global_block(),
                    self._segments[-1]._end_idx,
                    shard_allredue_vars,
                    self._shard,
                )

            insert_sync_comm_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
            )
1271
            # allreduce --> reduce
1272 1273 1274 1275 1276 1277 1278 1279 1280
            insert_reduce_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
                self._shard,
                op_role=OpRole.Backward,
                use_calc_stream=False,
            )
1281 1282

        for idx, segment in reversed(list(enumerate(self._segments))):
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
            allreduce_vars = (
                self._segments[idx - 1]._allreduce_vars if idx > 0 else []
            )
            broadcast_vars = (
                self._segments[idx + 1]._broadcast_vars
                if idx < len(self._segments) - 1
                else []
            )
            fill_constant_vars = (
                self._segments[idx + 2]._fill_constant_vars
                if idx < len(self._segments) - 2
                else []
            )
            cast_ops = (
                self._segments[idx + 2]._cast_ops
                if idx < len(self._segments) - 2
                else {}
            )
1301 1302 1303 1304

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
1305 1306 1307 1308 1309 1310 1311
                    if (
                        input_name in segment._param2broadcast
                        and input_name != segment._param2broadcast[input_name]
                    ):
                        op._rename_input(
                            input_name, segment._param2broadcast[input_name]
                        )
1312 1313 1314 1315 1316

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
1317 1318 1319 1320 1321 1322 1323 1324
                        shape=self._main_program.global_block()
                        .var(param_name)
                        .shape,
                        dtype=self._main_program.global_block()
                        .var(param_name)
                        .dtype,
                        persistable=False,
                    )
1325 1326 1327

            # step1: remove cast ops
            block._sync_with_cpp()
1328
            segment._end_idx += FP16Utils.remove_cast_op(
1329 1330
                block, self._params, segment, 0
            )
1331 1332

            # step2: add Sync ops
1333 1334
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
            if (
                self.gradient_merge_mode != "sharding_gm"
                or self._gradient_merge_acc_step <= 1
            ):
                if (
                    self.hybrid_dp
                    and self.hybrid_dp_mode == "sharding_hybrid_dp"
                    and len(shard_allredue_vars) >= 1
                ):
                    insert_sync_comm_ops(
                        block,
                        segment._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                    )
1350 1351 1352

                    broad_cast_vars = [x[0] for x in broadcast_vars]
                    if len(broad_cast_vars) > 0:
1353 1354 1355 1356 1357 1358
                        insert_sync_comm_ops(
                            block,
                            segment._end_idx,
                            self.sharding_ring_id,
                            broad_cast_vars,
                        )
1359 1360 1361 1362 1363
                else:
                    comm_dep_vars = allreduce_vars + [
                        x[0] for x in broadcast_vars
                    ]
                    if len(comm_dep_vars) > 0:
1364 1365 1366 1367 1368 1369
                        insert_sync_comm_ops(
                            block,
                            segment._end_idx,
                            self.sharding_ring_id,
                            comm_dep_vars,
                        )
1370
            # gradient merge
1371 1372 1373 1374
            elif (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
1375 1376
                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
1377 1378 1379 1380 1381 1382
                    insert_sync_comm_ops(
                        block,
                        segment._end_idx,
                        self.sharding_ring_id,
                        broad_cast_vars,
                    )
1383

1384 1385 1386 1387 1388
            calc_dep_vars = (
                fill_constant_vars
                + [k for k, v in cast_ops.items()]
                + self._segments[idx]._allreduce_vars
            )
1389 1390

            if len(calc_dep_vars) > 0:
1391 1392 1393
                insert_sync_calc_op(
                    block, segment._end_idx, [calc_dep_vars[-1]]
                )
1394

1395
            # step3: insert `fill_constant` ops
1396 1397 1398
            insert_fill_constant_ops(
                block, segment._end_idx, fill_constant_vars
            )
1399

1400
            # step4: add `cast` ops
1401 1402 1403
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
1404
            # gradient merge
1405 1406 1407 1408
            if (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
1409
                self.create_persistable_gradients_and_insert_merge_ops(
1410 1411 1412 1413 1414 1415
                    block,
                    self._startup_program.global_block(),
                    segment._start_idx,
                    shard_allredue_vars,
                    self._shard,
                )
1416

1417 1418 1419
            insert_broadcast_ops(
                block, segment._start_idx, self.sharding_ring_id, broadcast_vars
            )
1420

1421
            # step6: add all_reduce ops
1422
            # dp
1423 1424 1425 1426 1427 1428 1429 1430 1431
            if (
                self.gradient_merge_mode != "sharding_gm"
                or self._gradient_merge_acc_step <= 1
            ):
                if (
                    self.hybrid_dp
                    and self.hybrid_dp_mode == "sharding_hybrid_dp"
                    and len(shard_allredue_vars) >= 1
                ):
1432 1433 1434 1435 1436
                    insert_allreduce_ops(
                        block,
                        segment._start_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
1437 1438 1439 1440 1441 1442 1443 1444
                        user_defined_strategy=self.user_defined_strategy,
                    )
                    insert_sync_comm_ops(
                        block,
                        segment._start_idx,
                        self.sharding_ring_id,
                        allreduce_vars,
                    )
1445
            # gradient merge
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
            elif (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
                insert_sync_comm_ops(
                    block,
                    segment._start_idx,
                    self.sharding_ring_id,
                    allreduce_vars,
                )
1456
            # sharding
1457
            # allreduce --> reduce
1458 1459
            # TODO temp change
            if len(allreduce_vars) > 0:
1460 1461 1462 1463 1464 1465 1466 1467 1468
                insert_reduce_ops(
                    block,
                    segment._start_idx,
                    self.sharding_ring_id,
                    allreduce_vars,
                    self._shard,
                    op_role=OpRole.Backward,
                    use_calc_stream=False,
                )
1469 1470 1471 1472

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
1473
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
            insert_sync_comm_ops(
                block,
                self._segments[0]._start_idx,
                self.sharding_ring_id,
                broadcast_vars,
            )
            insert_broadcast_ops(
                block,
                self._segments[0]._start_idx,
                self.sharding_ring_id,
                self._segments[0]._broadcast_vars,
            )
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
1499 1500 1501
            insert_sync_calc_op(
                block, self._segments[0]._start_idx, [calc_deps_vars[-1]]
            )
1502 1503

        if fill_constant_vars:
1504 1505 1506
            insert_fill_constant_ops(
                block, self._segments[0]._start_idx, fill_constant_vars
            )
1507 1508 1509 1510 1511 1512

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

1513
    def _prune_startup_program(self, block, shard):
1514 1515
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
1516 1517 1518
                if shard.has_var(output_name):
                    continue
                if self._optimizer_sharding and shard.is_param(output_name):
1519
                    continue
1520
                # TODO why do we remove op, when only one var is removed
1521 1522 1523 1524
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
1525 1526 1527
            if shard.has_var(var_name):
                continue
            if self._optimizer_sharding and shard.is_param(var_name):
1528 1529 1530
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
1531

1532
    def _build_groups(self):
1533 1534
        """
        pre-assign ring ids
1535 1536 1537 1538
            mp: 0
            sharding: 1
            pure-dp: 2
            global: 3
W
WangXi 已提交
1539 1540
            pp: 4
            pp-pair: >= 20
1541
        if one parallelism is not enable: -1
1542
        and only support parallelism hierarchy: mp --> sharding --> pp --> dp
1543 1544 1545 1546 1547 1548
        """
        # step 1: initialize nccl
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.global_endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.global_endpoints[self.global_rank]
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        self._collective_helper = CollectiveHelper(
            self.role_maker, nrings=self._nrings_sharding
        )
        assert (
            self.global_word_size % self.mp_degree == 0
        ), "global_word_size: {} should be divisible to the mp_degree: {}".format(
            self.global_word_size, self.mp_degree
        )
        assert (
            self.global_word_size % self.sharding_degree == 0
        ), "global_word_size: {} should be divisible to the sharding_degree: {}".format(
            self.global_word_size, self.sharding_degree
        )
        assert (
            self.global_word_size % self.pp_degree == 0
        ), "global_word_size: {} should be divisible to the pp_degree: {}".format(
            self.global_word_size, self.pp_degree
        )
        assert (
            self.global_word_size % self.dp_degree == 0
        ), "global_word_size: {} should be divisible to the dp_degree: {}".format(
            self.global_word_size, self.dp_degree
        )
1572 1573 1574 1575 1576 1577 1578

        # mp group
        if self.mp_degree > 1:
            self.mp_ring_id = 0
            self.mp_rank = self.global_rank % self.mp_degree
            self.mp_group_id = self.global_rank // self.mp_degree
            self.mp_group_endpoints = [
1579 1580
                ep
                for idx, ep in enumerate(self.global_endpoints)
1581
                if idx // self.mp_degree == self.mp_group_id
1582
            ]
1583
            assert self.current_endpoint in self.mp_group_endpoints
1584 1585 1586 1587 1588
            assert (
                len(self.mp_group_endpoints) == self.mp_degree
            ), "num of mp worker in group is [{}], but mp group size is [{}]".format(
                len(self.mp_group_endpoints), self.mp_degree
            )
1589 1590 1591 1592 1593 1594 1595
        else:
            self.mp_degree = 1
            self.mp_ring_id = -1
            self.mp_rank = -1
            self.mp_group_id = -1
            self.mp_group_endpoints = []

1596
        # sharding
1597 1598
        if self.sharding_degree > 1:
            self.sharding_ring_id = 1
1599 1600 1601 1602 1603 1604
            self.sharding_rank = (
                self.global_rank // self.mp_degree
            ) % self.sharding_degree
            self.sharding_group_id = self.global_rank // (
                self.mp_degree * self.sharding_degree
            )
1605 1606 1607
            # mp + sharding + ...
            if self.mp_degree > 1:
                self.sharding_group_endpoints = [
1608 1609 1610 1611 1612
                    ep
                    for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree))
                    == self.sharding_group_id
                    and idx % self.mp_degree == self.mp_rank
1613
                ]
1614
            # sharding + ...
1615 1616
            else:
                self.sharding_group_endpoints = [
1617 1618 1619 1620
                    ep
                    for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree))
                    == self.sharding_group_id
1621 1622 1623 1624 1625 1626 1627 1628 1629
                ]
            assert self.current_endpoint in self.sharding_group_endpoints
        else:
            self.sharding_degree = 1
            self.sharding_ring_id = -1
            self.sharding_rank = -1
            self.sharding_group_id = -1
            self.sharding_group_endpoints = []

1630 1631
        # pp
        if self.pp_degree > 1:
1632 1633 1634
            self.pp_pair_ring_id = 20
            # pipeline global ring_id set to 4 for sharding0, mp1, dp2, global3
            self.pp_ring_id = 4
1635 1636 1637 1638 1639
            self.pp_rank = (
                self.global_rank
                // (self.sharding_degree * self.mp_degree)
                % self.pp_degree
            )
1640 1641
            # (NOTE): Already adjust for (outter-pure) dp
            self.pp_group_id = self.global_rank // (
1642 1643
                self.mp_degree * self.sharding_degree * self.pp_degree
            )
1644
            pp_first_stage_idx = self.global_rank % (
1645 1646 1647 1648
                self.sharding_degree * self.mp_degree
            ) + self.pp_group_id * (
                self.mp_degree * self.sharding_degree * self.pp_degree
            )
1649 1650 1651
            pp_stage_offset = self.sharding_degree * self.mp_degree
            self.pp_group_endpoints = []
            for i in range(self.pp_degree):
1652
                self.pp_group_endpoints.append(
1653 1654 1655 1656
                    self.global_endpoints[
                        pp_first_stage_idx + pp_stage_offset * i
                    ]
                )
1657 1658 1659
            assert self.current_endpoint in self.pp_group_endpoints
        else:
            self.pp_ring_id = -1
1660 1661
            self.pp_degree = 1
            self.pp_pair_ring_id = -1
1662 1663 1664 1665
            self.pp_rank = -1
            self.pp_group_id = -1
            self.pp_group_endpoints = []

1666 1667 1668
        # outter-pure-dp group
        # NOTE (JZ-LIANG) support outter-pure-dp to scale the throughput in 3D parallelism
        # e.g. mp-sharding-pp-dp
1669
        # sharding-hybrid-dp as one senario of outter-pure-dp
L
lilong12 已提交
1670 1671
        local_pp_degree = self.pp_degree
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
            assert self.pp_degree == 2, (
                "For manually set pipeline, only " "pp_degree = 2 is supported."
            )
            assert (
                self.global_word_size
                == self.mp_degree * self.sharding_degree * self.dp_degree
            ), "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                self.global_word_size,
                self.mp_degree,
                self.sharding_degree,
                self.dp_degree,
            )
L
lilong12 已提交
1684 1685
            local_pp_degree = 1
        else:
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
            assert (
                self.global_word_size
                == self.mp_degree
                * self.sharding_degree
                * self.pp_degree
                * self.dp_degree
            ), "mp_degree: [{}], sharding_degree: [{}], pp_degree: [{}], dp_degree: [{}]; BUT global nrank: [{}]".format(
                self.mp_degree,
                self.sharding_degree,
                self.pp_degree,
                self.dp_degree,
                self.global_word_size,
            )
1699

1700 1701
        if self.dp_degree > 1:
            self.dp_ring_id = 2
L
lilong12 已提交
1702
            self.dp_rank = self.global_rank // (
1703 1704
                self.sharding_degree * self.mp_degree * local_pp_degree
            )
1705
            dp_first_rank_idx = self.global_rank % (
1706 1707 1708
                self.sharding_degree * self.mp_degree * local_pp_degree
            )
            dp_offset = self.sharding_degree * self.mp_degree * local_pp_degree
1709 1710
            self.dp_group_endpoints = []
            for i in range(self.dp_degree):
1711
                self.dp_group_endpoints.append(
1712 1713
                    self.global_endpoints[dp_first_rank_idx + dp_offset * i]
                )
1714
            assert self.current_endpoint in self.dp_group_endpoints
1715
            logger.info("Hybrid DP mode turn on !")
1716 1717 1718
        else:
            self.dp_ring_id = -1
            self.dp_rank = -1
1719
            self.dp_group_endpoints = []
1720

1721
        # global group
1722 1723
        # use for gen_nccl_comm_sync, amp check nan inf, clip by global norm
        # NOTE (JZ-LIANG) when use global ring for calc global norm and dp_degree > 1, the allreduce result should be devided by dp_degree
1724
        self.global_ring_id = 3
1725

1726 1727 1728 1729
        logger.info(f"global word size: {self.global_word_size}")
        logger.info(f"global rank: {self.global_rank}")
        logger.info(f"global endpoints: {self.global_endpoints}")
        logger.info(f"global ring id: {self.global_ring_id}")
1730 1731
        logger.info("#####" * 6)

1732 1733 1734 1735 1736
        logger.info(f"mp group size: {self.mp_degree}")
        logger.info(f"mp rank: {self.mp_rank}")
        logger.info(f"mp group id: {self.mp_group_id}")
        logger.info(f"mp group endpoints: {self.mp_group_endpoints}")
        logger.info(f"mp ring id: {self.mp_ring_id}")
1737 1738
        logger.info("#####" * 6)

1739 1740 1741
        logger.info(f"sharding group size: {self.sharding_degree}")
        logger.info(f"sharding rank: {self.sharding_rank}")
        logger.info(f"sharding group id: {self.sharding_group_id}")
1742
        logger.info(
1743
            f"sharding group endpoints: {self.sharding_group_endpoints}"
1744
        )
1745
        logger.info(f"sharding ring id: {self.sharding_ring_id}")
1746 1747
        logger.info("#####" * 6)

1748 1749 1750 1751 1752
        logger.info(f"pp group size: {self.pp_degree}")
        logger.info(f"pp rank: {self.pp_rank}")
        logger.info(f"pp group id: {self.pp_group_id}")
        logger.info(f"pp group endpoints: {self.pp_group_endpoints}")
        logger.info(f"pp ring id: {self.pp_ring_id}")
1753 1754
        logger.info("#####" * 6)

1755 1756 1757 1758
        logger.info(f"pure dp group size: {self.dp_degree}")
        logger.info(f"pure dp rank: {self.dp_rank}")
        logger.info(f"pure dp group endpoints: {self.dp_group_endpoints}")
        logger.info(f"pure dp ring id: {self.dp_ring_id}")
1759
        logger.info("#####" * 6)
1760 1761

        return
1762

1763 1764 1765 1766 1767 1768 1769
    def _recreate_not_persist_param_as_var(self):
        def recreate_not_persist_param_as_var(program):
            block = program.global_block()
            params = block.all_parameters()
            for param in params:
                if param.persistable:
                    continue
1770

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
                name = param.name
                shape = param.shape
                dtype = param.dtype
                type = param.type
                lod_level = param.lod_level
                stop_gradient = param.stop_gradient
                trainable = param.trainable
                optimize_attr = param.optimize_attr
                regularizer = param.regularizer
                have_dist_attr = False
                is_distributed = False
                if hasattr(param, 'is_distributed'):
                    have_dist_attr = True
                    is_distributed = param.is_distributed

1786
                block._remove_var(name, sync=False)
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
                var = block.create_var(
                    name=name,
                    shape=shape,
                    dtype=dtype,
                    type=type,
                    lod_level=lod_level,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    persistable=False,
                )
1797 1798 1799
                if have_dist_attr:
                    var.is_distributed = is_distributed

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
            block._sync_with_cpp()

        recreate_not_persist_param_as_var(self._startup_program)
        recreate_not_persist_param_as_var(self._main_program)

    def _initialization_broadcast(self):
        """
        this funtion is to ensure the initialization between dp group to be
        identical when hybrid-dp is used, and the initialization of
        not distributed param between mp group to be identical.
        """
        if self.dp_degree <= 1 and self.mp_degree <= 1:
            return

        startup_block = self._startup_program.global_block()

        params = startup_block.all_parameters()
        params_name = []
        not_dist_param_name = set()

        for param in params:
            params_name.append(param.name)
            if not hasattr(param, 'is_distributed') or not param.is_distributed:
                not_dist_param_name.add(param.name)

1825 1826 1827 1828 1829 1830 1831
        # offload and optimize_cast will insert broadcast op
        broadcast_params = set()
        for op in startup_block.ops:
            if op.type == 'c_broadcast':
                broadcast_params.add(op.desc.output_arg_names()[0])

        for param in params_name:
1832 1833
            if param in broadcast_params:
                continue
1834 1835 1836 1837 1838 1839 1840 1841 1842

            rings = []
            # need sync not distributed param in mp group
            if self.mp_degree > 1 and param in not_dist_param_name:
                rings.append(self.mp_ring_id)
            if self.dp_degree > 1:
                rings.append(self.dp_ring_id)

            for ring in rings:
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
                startup_block.append_op(
                    type='c_broadcast',
                    inputs={'X': param},
                    outputs={'Out': param},
                    attrs={
                        'ring_id': ring,
                        'root': 0,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Forward,
                    },
                )
1854

1855 1856
        startup_block._sync_with_cpp()

1857 1858
    # sharding gradient merge
    def create_persistable_gradients_and_insert_merge_ops(
1859 1860
        self, main_block, startup_block, insert_idx, grad_names, shard
    ):
1861 1862

        for grad_name in grad_names:
1863 1864 1865 1866 1867
            assert (
                get_grad_device(grad_name, shard) == shard.worker_idx
            ), "try to merge gradient not belong to current shard: [{}]".format(
                grad_name
            )
1868
            persistable_grad_name = grad_name + '@GradiantMerge'
1869 1870 1871 1872 1873
            assert (
                grad_name not in self._grad2merged_grad
            ), "grad [{}] already in grad2merged_grad, maybe you meet sharing weight case !".format(
                grad_name
            )
1874 1875 1876 1877 1878 1879 1880
            self._grad2merged_grad[grad_name] = persistable_grad_name
            grad_var = main_block.var(grad_name)
            # create var
            gradient_merge_var = main_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
1881 1882
                persistable=True,
            )
1883 1884 1885 1886
            startup_gradient_merge_var = startup_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
1887 1888
                persistable=True,
            )
1889 1890 1891 1892 1893

            # merge gradient
            main_block._insert_op_without_sync(
                insert_idx,
                type="elementwise_add",
1894
                inputs={'X': grad_name, 'Y': gradient_merge_var},
1895 1896 1897 1898
                outputs={'Out': gradient_merge_var},
                attrs={
                    'axis': -1,
                    'use_mkldnn': False,
1899 1900 1901
                    OP_ROLE_KEY: OpRole.Backward,
                },
            )
1902 1903

            # startup initialization
1904 1905 1906 1907 1908 1909 1910 1911 1912
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": grad_var.shape,
                    "dtype": grad_var.dtype,
                    "value": float(0),
                },
            )
1913 1914 1915 1916 1917 1918

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

    def _create_gm_cond(self, main_block):
        # Add const var
W
wangxiaoning 已提交
1919
        acc_step_var = create_global_var(
1920 1921 1922 1923 1924
            name="gradient_merge_acc_step",
            shape=[1],
            value=int(self._gradient_merge_acc_step),
            dtype='int32',
            persistable=True,
1925 1926
            force_cpu=True,
        )
1927

W
wangxiaoning 已提交
1928
        zero_var = create_global_var(
1929 1930 1931 1932 1933 1934 1935
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
1936 1937

        # Add step var & cond var
W
wangxiaoning 已提交
1938
        current_step_var = create_global_var(
1939 1940 1941 1942 1943
            name="gradient_merge_current_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
1944 1945
            force_cpu=True,
        )
1946

1947 1948 1949
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
1950 1951 1952

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
            main_block.append_op(
                type='increment',
                inputs={'X': [current_step_var]},
                outputs={'Out': [current_step_var]},
                attrs={'step': float(1), OP_ROLE_KEY: OpRole.Optimize},
            )

            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': current_step_var, 'Y': acc_step_var},
                outputs={'Out': current_step_var},
                attrs={
                    'axis': -1,
                    OP_ROLE_KEY: OpRole.Optimize,
                    'use_mkldnn': False,
                },
            )
1970 1971

            # cond_var = (step_var == 0)
1972 1973 1974 1975 1976 1977
            main_block.append_op(
                type='equal',
                inputs={'X': current_step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
                attrs={OP_ROLE_KEY: OpRole.Optimize},
            )
1978 1979 1980 1981 1982 1983 1984 1985 1986
        # paddle.static.Print(current_step_var, message="in FWBW last conditional")
        return cond_var

    def _true_apply_gradient(self):
        """
        allreduce grad@gradientmerge in dp group
        grad@gradientmerge / acc_step
        re-create all optimize ops of origin main block and rename them
            cast(backward)
1987
            amp
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
            clip
            opt
        # fill constant grad@gradientmerge

        """
        # current conditional block
        main_block = self._main_program.global_block()
        cur_block_idx = self._main_program.current_block_idx
        cur_block = self._main_program.current_block()
        self.cond_block = self._main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)

2002
        # allreduce grad@gradientmerge
2003
        if self.hybrid_dp:
2004 2005 2006
            assert (
                self.dp_ring_id >= 0
            ), "dp_ring_id should larger than 0 when in sharding&DP mode"
2007 2008
            for grad, merged_grad in self._grad2merged_grad.items():
                merged_grad_var = main_block.var(merged_grad)
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
                cur_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': merged_grad_var},
                    outputs={'Out': merged_grad_var},
                    attrs={
                        'ring_id': self.dp_ring_id,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Optimize,
                    },
                )
2019 2020 2021 2022 2023

        # grad@gradientmerge / acc_step
        for grad, merged_grad in self._grad2merged_grad.items():
            # grad /= k_steps
            merged_grad_var = main_block.var(merged_grad)
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
            cur_block.append_op(
                type='scale',
                inputs={'X': merged_grad_var},
                outputs={'Out': merged_grad_var},
                attrs={
                    'scale': 1.0 / float(self._gradient_merge_acc_step),
                    'bias': 0.0,
                    'bias_after_scale': False,
                    OP_ROLE_KEY: OpRole.Optimize,
                },
            )
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

        # re-create optimize ops
        already_moved_var_names = []
        for op_desc in self.original_optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            for input_name in new_op_desc.input_arg_names():
                if input_name in self._grad2merged_grad:
                    new_op_desc._rename_input(
2045 2046
                        input_name, self._grad2merged_grad[input_name]
                    )
2047 2048 2049 2050

            for output_name in new_op_desc.output_arg_names():
                if output_name in self._grad2merged_grad:
                    new_op_desc._rename_output(
2051 2052
                        output_name, self._grad2merged_grad[output_name]
                    )
2053 2054

                # move non temp optimize vars from block0 to cond block
2055 2056 2057
                if (
                    output_name not in already_moved_var_names
                    and output_name not in self._grad2merged_grad.keys()
2058 2059 2060 2061 2062 2063 2064 2065
                ):
                    var_ = self._main_program.global_block().var(output_name)
                    if not var_.persistable:
                        # move
                        name_ = var_.name
                        shape_ = var_.shape
                        type_ = var_.dtype
                        self._main_program.global_block()._remove_var(
2066 2067 2068 2069 2070 2071 2072 2073
                            var_.name, sync=False
                        )
                        self.cond_block.create_var(
                            name=name_,
                            shape=shape_,
                            dtype=type_,
                            persistable=False,
                        )
2074 2075 2076 2077 2078 2079 2080 2081
                        already_moved_var_names.append(name_)

        self._main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # fill zero to grad@gradientmerge
        for grad, merged_grad in self._grad2merged_grad.items():
            merged_grad_var = main_block.var(merged_grad)
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
            cur_block.append_op(
                type='fill_constant',
                outputs={'Out': merged_grad_var},
                attrs={
                    "shape": merged_grad_var.shape,
                    "dtype": merged_grad_var.dtype,
                    "value": float(0),
                    OP_ROLE_KEY: OpRole.Optimize,
                },
            )
2092 2093 2094 2095

        # lr_var = main_block.var("gradient_merge_current_step")
        # paddle.static.Print(lr_var, message="in OPTIMIZE last conditional")

W
WangXi 已提交
2096
    def _sharding_gradient_merge(self):
2097 2098 2099 2100 2101 2102
        """
        copy all optimize ops in origin main block
        remove all optimize ops in origin main block
        create cond block

        """
2103 2104 2105 2106
        if (
            self.gradient_merge_mode != "sharding_gm"
            or self._gradient_merge_acc_step <= 1
        ):
W
WangXi 已提交
2107 2108 2109
            return

        main_block = self._main_program.global_block()
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
        # copy original optimize ops to temp ops desc list
        # remove them from block 0
        tmp_copy_block = self._main_program._create_block()

        self.original_optimize_ops_desc = []
        for op_idx, op in reversed(list(enumerate(main_block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                continue
            else:
                tmp_op_desc = tmp_copy_block.desc.append_op()
                tmp_op_desc.copy_from(op.desc)
                self.original_optimize_ops_desc.append(tmp_op_desc)
                main_block._remove_op(op_idx, sync=False)
        tmp_copy_block._sync_with_cpp()
        self.original_optimize_ops_desc = list(
2125 2126
            reversed(self.original_optimize_ops_desc)
        )
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

        # back to block 0
        self._main_program._rollback()

        # create cond vars and ops at the end of block 0
        cond = self._create_gm_cond(main_block)

        # create cond block
        cond_block = self._main_program._create_block()
        self._true_apply_gradient()

        # back to block 0
        self._main_program._rollback()

        # cond op
        step_scope = self._main_program.global_block().create_var(
2143 2144
            type=core.VarDesc.VarType.STEP_SCOPES
        )
2145 2146 2147 2148 2149 2150
        conditional_block_op = self._main_program.global_block().append_op(
            type='conditional_block',
            inputs={
                'Cond': cond,
                'Input': [],
            },
2151
            outputs={'Out': [], 'Scope': [step_scope]},
2152 2153 2154
            attrs={
                'sub_block': cond_block,
                'is_scalar_condition': True,
2155 2156
            },
        )