callbacks.py 18.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import numbers
17

18
from paddle.fluid.dygraph.parallel import ParallelEnv
19
from paddle.utils import try_import
20 21 22

from .progressbar import ProgressBar

23
__all__ = ['Callback', 'ProgBarLogger', 'ModelCheckpoint', 'VisualDL']
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123


def config_callbacks(callbacks=None,
                     model=None,
                     batch_size=None,
                     epochs=None,
                     steps=None,
                     log_freq=2,
                     verbose=2,
                     save_freq=1,
                     save_dir=None,
                     metrics=None,
                     mode='train'):
    cbks = callbacks or []
    cbks = cbks if isinstance(cbks, (list, tuple)) else [cbks]
    if not any(isinstance(k, ProgBarLogger) for k in cbks) and verbose:
        cbks = [ProgBarLogger(log_freq, verbose=verbose)] + cbks

    if not any(isinstance(k, ModelCheckpoint) for k in cbks):
        cbks = cbks + [ModelCheckpoint(save_freq, save_dir)]

    cbk_list = CallbackList(cbks)
    cbk_list.set_model(model)
    metrics = metrics or [] if mode != 'test' else []
    params = {
        'batch_size': batch_size,
        'epochs': epochs,
        'steps': steps,
        'verbose': verbose,
        'metrics': metrics,
    }
    cbk_list.set_params(params)
    return cbk_list


class CallbackList(object):
    def __init__(self, callbacks=None):
        # copy
        self.callbacks = [c for c in callbacks]
        self.params = {}
        self.model = None

    def append(self, callback):
        self.callbacks.append(callback)

    def __iter__(self):
        return iter(self.callbacks)

    def set_params(self, params):
        for c in self.callbacks:
            c.set_params(params)

    def set_model(self, model):
        for c in self.callbacks:
            c.set_model(model)

    def _call(self, name, *args):
        for c in self.callbacks:
            func = getattr(c, name)
            func(*args)

    def _check_mode(self, mode):
        assert mode in ['train', 'eval', 'test'], \
            'mode should be train, eval or test'

    def on_begin(self, mode, logs=None):
        self._check_mode(mode)
        name = 'on_{}_begin'.format(mode)
        self._call(name, logs)

    def on_end(self, mode, logs=None):
        self._check_mode(mode)
        name = 'on_{}_end'.format(mode)
        self._call(name, logs)

    def on_epoch_begin(self, epoch=None, logs=None):
        self._call('on_epoch_begin', epoch, logs)

    def on_epoch_end(self, epoch=None, logs=None):
        self._call('on_epoch_end', epoch, logs)

    def on_batch_begin(self, mode, step=None, logs=None):
        self._check_mode(mode)
        name = 'on_{}_batch_begin'.format(mode)
        self._call(name, step, logs)

    def on_batch_end(self, mode, step=None, logs=None):
        self._check_mode(mode)
        name = 'on_{}_batch_end'.format(mode)
        self._call(name, step, logs)


class Callback(object):
    """
    Base class used to build new callbacks.

    Examples:

        .. code-block:: python
            
124
            import paddle
125 126

            # build a simple model checkpoint callback
127
            class ModelCheckpoint(paddle.callbacks.Callback):
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
                def __init__(self, save_freq=1, save_dir=None):
                    self.save_freq = save_freq
                    self.save_dir = save_dir

                def on_epoch_end(self, epoch, logs=None):
                    if self.model is not None and epoch % self.save_freq == 0:
                        path = '{}/{}'.format(self.save_dir, epoch)
                        print('save checkpoint at {}'.format(path))
                        self.model.save(path)

    """

    def __init__(self):
        self.model = None
        self.params = {}

    def set_params(self, params):
        """
        Set parameters, which is dict. The keys contain:

          - 'batch_size': an integer. Number of samples per batch.
          - 'epochs': an integer. Number of epochs.
          - 'steps': an integer. Number of steps of one epoch.
          - 'verbose': an integer. Verbose mode is 0, 1 or 2.
             0 = silent, 1 = progress bar, 2 = one line per epoch.
          - 'metrics': a list of str. Names of metrics, including 'loss'
154
              and the names of paddle.metric.Metric.
155 156 157 158
        """
        self.params = params

    def set_model(self, model):
159
        """model is instance of paddle.Model.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        """
        self.model = model

    def on_train_begin(self, logs=None):
        """Called at the start of training.

        Args:
            logs (dict): The logs is a dict or None.
        """

    def on_train_end(self, logs=None):
        """Called at the end of training.

        Args:
            logs (dict): The logs is a dict or None. The keys of logs
175
                passed by paddle.Model contains 'loss', metric names and
176 177 178 179 180 181 182 183
                `batch_size`.
        """

    def on_eval_begin(self, logs=None):
        """Called at the start of evaluation.

        Args:
            logs (dict): The logs is a dict or None. The keys of logs
184
                passed by paddle.Model contains 'steps' and 'metrics',
185 186
                The `steps` is number of total steps of validation dataset.
                The `metrics` is a list of str including 'loss' and the names
187
                of paddle.metric.Metric.
188 189 190 191 192 193 194
        """

    def on_eval_end(self, logs=None):
        """Called at the end of evaluation.

        Args:
            logs (dict): The logs is a dict or None. The `logs` passed by
195
                paddle.Model is a dict contains 'loss', metrics and 'batch_size'
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
                of last batch of validation dataset.
        """

    def on_test_begin(self, logs=None):
        """Called at the beginning of predict.

        Args:
            logs (dict): The logs is a dict or None.
        """

    def on_test_end(self, logs=None):
        """Called at the end of predict.

        Args:
            logs (dict): The logs is a dict or None.
        """

    def on_epoch_begin(self, epoch, logs=None):
        """Called at the beginning of each epoch.

        Args:
            epoch (int): The index of epoch.
            logs (dict): The logs is a dict or None. The `logs` passed by
219
                paddle.Model is None.
220 221 222 223 224 225 226 227
        """

    def on_epoch_end(self, epoch, logs=None):
        """Called at the end of each epoch.

        Args:
            epoch (int): The index of epoch.
            logs (dict): The logs is a dict or None. The `logs` passed by
228
                paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
229 230 231 232 233 234 235 236 237
                of last batch.
        """

    def on_train_batch_begin(self, step, logs=None):
        """Called at the beginning of each batch in training.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None. The `logs` passed by
238
                paddle.Model is empty.
239 240 241 242 243 244 245 246
        """

    def on_train_batch_end(self, step, logs=None):
        """Called at the end of each batch in training.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None. The `logs` passed by
247
                paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
248 249 250 251 252 253 254 255 256
                of current batch.
        """

    def on_eval_batch_begin(self, step, logs=None):
        """Called at the beginning of each batch in evaluation.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None. The `logs` passed by
257
                paddle.Model is empty.
258 259 260 261 262 263 264 265
        """

    def on_eval_batch_end(self, step, logs=None):
        """Called at the end of each batch in evaluation.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None. The `logs` passed by
266
                paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
                of current batch.
        """

    def on_test_batch_begin(self, step, logs=None):
        """Called at the beginning of each batch in predict.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None.
        """

    def on_test_batch_end(self, step, logs=None):
        """Called at the end of each batch in predict.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None.
        """


class ProgBarLogger(Callback):
    """Logger callback function
    Args:
        log_freq (int): The frequency, in number of steps, the logs such as `loss`, 
                `metrics` are printed. Default: 1.
        verbose (int): The verbosity mode, should be 0, 1, or 2.
                0 = silent, 1 = progress bar, 2 = one line per epoch. Default: 2.

    Examples:
        .. code-block:: python

298
            import paddle
299
            from paddle.static import InputSpec
300

301 302
            inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
303

304
            train_dataset = paddle.vision.datasets.MNIST(mode='train')
305

L
LielinJiang 已提交
306 307
            lenet = paddle.vision.LeNet()
            model = paddle.Model(lenet,
308
                inputs, labels)
309

L
LielinJiang 已提交
310
            optim = paddle.optimizer.Adam(0.001, parameters=lenet.parameters())
311
            model.prepare(optimizer=optim,
312 313
                        loss=paddle.nn.CrossEntropyLoss(),
                        metrics=paddle.metric.Accuracy())
314

315
            callback = paddle.callbacks.ProgBarLogger(log_freq=10)
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
            model.fit(train_dataset, batch_size=64, callbacks=callback)
    """

    def __init__(self, log_freq=1, verbose=2):
        self.epochs = None
        self.steps = None
        self.progbar = None
        self.verbose = verbose
        self.log_freq = log_freq

    def _is_print(self):
        return self.verbose and ParallelEnv().local_rank == 0

    def on_train_begin(self, logs=None):
        self.epochs = self.params['epochs']
        assert self.epochs
        self.train_metrics = self.params['metrics']
        assert self.train_metrics

    def on_epoch_begin(self, epoch=None, logs=None):
        self.steps = self.params['steps']
        self.epoch = epoch
        self.train_step = 0
        if self.epochs and self._is_print():
            print('Epoch %d/%d' % (epoch + 1, self.epochs))
        self.train_progbar = ProgressBar(num=self.steps, verbose=self.verbose)

    def _updates(self, logs, mode):
        values = []
        metrics = getattr(self, '%s_metrics' % (mode))
        progbar = getattr(self, '%s_progbar' % (mode))
        steps = getattr(self, '%s_step' % (mode))

        for k in metrics:
            if k in logs:
                values.append((k, logs[k]))

        progbar.update(steps, values)

    def on_train_batch_end(self, step, logs=None):
        logs = logs or {}
        self.train_step += 1

        if self._is_print() and self.train_step % self.log_freq == 0:
            if self.steps is None or self.train_step < self.steps:
                self._updates(logs, 'train')

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        if self._is_print() and (self.steps is not None):
            self._updates(logs, 'train')

    def on_eval_begin(self, logs=None):
        self.eval_steps = logs.get('steps', None)
        self.eval_metrics = logs.get('metrics', [])
        self.eval_step = 0
        self.evaled_samples = 0

        self.eval_progbar = ProgressBar(
            num=self.eval_steps, verbose=self.verbose)
        if self._is_print():
            print('Eval begin...')

    def on_eval_batch_end(self, step, logs=None):
        logs = logs or {}
        self.eval_step += 1
        samples = logs.get('batch_size', 1)
        self.evaled_samples += samples

        if self._is_print() and self.eval_step % self.log_freq == 0:
            if self.eval_steps is None or self.eval_step < self.eval_steps:
                self._updates(logs, 'eval')

    def on_test_begin(self, logs=None):
        self.test_steps = logs.get('steps', None)
        self.test_metrics = logs.get('metrics', [])
        self.test_step = 0
        self.tested_samples = 0
        self.test_progbar = ProgressBar(
            num=self.test_steps, verbose=self.verbose)
        if self._is_print():
            print('Predict begin...')

    def on_test_batch_end(self, step, logs=None):
        logs = logs or {}
        self.test_step += 1
        samples = logs.get('batch_size', 1)
        self.tested_samples += samples

        if self.test_step % self.log_freq == 0 and self._is_print():
            if self.test_steps is None or self.test_step < self.test_steps:
                self._updates(logs, 'test')

    def on_eval_end(self, logs=None):
        logs = logs or {}
        if self._is_print() and (self.eval_steps is not None):
            self._updates(logs, 'eval')
            print('Eval samples: %d' % (self.evaled_samples))

    def on_test_end(self, logs=None):
        logs = logs or {}
        if self._is_print():
            if self.test_step % self.log_freq != 0 or self.verbose == 1:
                self._updates(logs, 'test')
            print('Predict samples: %d' % (self.tested_samples))


class ModelCheckpoint(Callback):
    """Model checkpoint callback function
    Args:
        save_freq(int): The frequency, in number of epochs, the model checkpoint 
                        are saved. Default: 1.
        save_dir(str|None): The directory to save checkpoint during training.
                If None, will not save checkpoint. Default: None.

    Examples:
        .. code-block:: python

434
            import paddle
435
            from paddle.static import InputSpec
436

437 438
            inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
439

440
            train_dataset = paddle.vision.datasets.MNIST(mode='train')
441

L
LielinJiang 已提交
442 443
            lenet = paddle.vision.LeNet()
            model = paddle.Model(lenet,
444
                inputs, labels)
445

L
LielinJiang 已提交
446
            optim = paddle.optimizer.Adam(0.001, parameters=lenet.parameters())
447
            model.prepare(optimizer=optim,
448 449
                        loss=paddle.nn.CrossEntropyLoss(),
                        metrics=paddle.metric.Accuracy())
450

451
            callback = paddle.callbacks.ModelCheckpoint(save_dir='./temp')
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
            model.fit(train_dataset, batch_size=64, callbacks=callback)
    """

    def __init__(self, save_freq=1, save_dir=None):
        self.save_freq = save_freq
        self.save_dir = save_dir

    def on_epoch_begin(self, epoch=None, logs=None):
        self.epoch = epoch

    def _is_save(self):
        return self.model and self.save_dir and ParallelEnv().local_rank == 0

    def on_epoch_end(self, epoch, logs=None):
        if self._is_save() and self.epoch % self.save_freq == 0:
            path = '{}/{}'.format(self.save_dir, epoch)
468
            print('save checkpoint at {}'.format(os.path.abspath(path)))
469 470 471 472 473
            self.model.save(path)

    def on_train_end(self, logs=None):
        if self._is_save():
            path = '{}/final'.format(self.save_dir)
474
            print('save checkpoint at {}'.format(os.path.abspath(path)))
475
            self.model.save(path)
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583


class VisualDL(Callback):
    """VisualDL callback function
    Args:
        log_dir (str): The directory to save visualdl log file.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.static import InputSpec

            inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
            labels = [InputSpec([None, 1], 'int64', 'label')]

            train_dataset = paddle.vision.datasets.MNIST(mode='train')
            eval_dataset = paddle.vision.datasets.MNIST(mode='test')

            net = paddle.vision.LeNet()
            model = paddle.Model(net, inputs, labels)

            optim = paddle.optimizer.Adam(0.001, parameters=net.parameters())
            model.prepare(optimizer=optim,
                        loss=paddle.nn.CrossEntropyLoss(),
                        metrics=paddle.metric.Accuracy())
            
            ## uncomment following lines to fit model with visualdl callback function
            # callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir')
            # model.fit(train_dataset, eval_dataset, batch_size=64, callbacks=callback)

    """

    def __init__(self, log_dir):
        self.log_dir = log_dir
        self.epochs = None
        self.steps = None
        self.epoch = 0

    def _is_write(self):
        return ParallelEnv().local_rank == 0

    def on_train_begin(self, logs=None):
        self.epochs = self.params['epochs']
        assert self.epochs
        self.train_metrics = self.params['metrics']
        assert self.train_metrics
        self._is_fit = True
        self.train_step = 0

    def on_epoch_begin(self, epoch=None, logs=None):
        self.steps = self.params['steps']
        self.epoch = epoch

    def _updates(self, logs, mode):
        if not self._is_write():
            return
        if not hasattr(self, 'writer'):
            visualdl = try_import('visualdl')
            self.writer = visualdl.LogWriter(self.log_dir)

        metrics = getattr(self, '%s_metrics' % (mode))
        current_step = getattr(self, '%s_step' % (mode))

        if mode == 'train':
            total_step = current_step
        else:
            total_step = self.epoch

        for k in metrics:
            if k in logs:
                temp_tag = mode + '/' + k

                if isinstance(logs[k], (list, tuple)):
                    temp_value = logs[k][0]
                elif isinstance(logs[k], numbers.Number):
                    temp_value = logs[k]
                else:
                    continue

                self.writer.add_scalar(
                    tag=temp_tag, step=total_step, value=temp_value)

    def on_train_batch_end(self, step, logs=None):
        logs = logs or {}
        self.train_step += 1

        if self._is_write():
            self._updates(logs, 'train')

    def on_eval_begin(self, logs=None):
        self.eval_steps = logs.get('steps', None)
        self.eval_metrics = logs.get('metrics', [])
        self.eval_step = 0
        self.evaled_samples = 0

    def on_train_end(self, logs=None):
        if hasattr(self, 'writer'):
            self.writer.close()
            delattr(self, 'writer')

    def on_eval_end(self, logs=None):
        if self._is_write():
            self._updates(logs, 'eval')

            if (not hasattr(self, '_is_fit')) and hasattr(self, 'writer'):
                self.writer.close()
                delattr(self, 'writer')