ps_gpu_trainer.cc 9.2 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cstdlib>
#include <string>
#include <vector>
#include "io/fs.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
23 24
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
25 26 27 28 29 30 31
#include "paddle/fluid/platform/cuda_device_guard.h"

namespace paddle {
namespace framework {

void PSGPUTrainer::Initialize(const TrainerDesc& trainer_desc,
                              Dataset* dataset) {
T
Thunderbrook 已提交
32
  SetDataset(dataset);
T
Thunderbrook 已提交
33 34
  thread_num_ = trainer_desc.thread_num();
  param_ = trainer_desc.downpour_param();
T
Thunderbrook 已提交
35 36 37
  ParseDumpConfig(trainer_desc);
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
T
Thunderbrook 已提交
38 39 40 41 42 43 44 45 46 47 48 49
  for (int i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }
  scale_datanorm_ = trainer_desc.scale_datanorm();
  int place_num = trainer_desc.worker_places_size();
  const std::vector<paddle::framework::DataFeed*> readers =
      dataset->GetReaders();
T
Thunderbrook 已提交
50 51
  dump_file_num_ = trainer_desc.dump_file_num();
  user_define_dump_filename_ = trainer_desc.user_define_dump_filename();
T
Thunderbrook 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  std::vector<int> dev_ids;
  for (int i = 0; i < place_num; ++i) {
    int num = trainer_desc.worker_places(i);
    platform::CUDAPlace place = platform::CUDAPlace(num);
    places_.push_back(place);
    dev_ids.push_back(num);
  }
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
  VLOG(3) << "going to initialize pull dense worker";
  SetDebug(trainer_desc.debug());
  trainer_desc_ = trainer_desc;
  workers_.resize(place_num);
  for (int i = 0; i < place_num; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
T
Thunderbrook 已提交
72 73 74 75 76
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
T
Thunderbrook 已提交
77 78 79 80 81 82 83
    workers_[i]->SetDataFeed(readers[i]);
    workers_[i]->Initialize(trainer_desc);
    workers_[i]->SetWorkerNum(place_num);
  }
  return;
}

T
Thunderbrook 已提交
84 85 86 87 88 89 90 91
std::string PSGPUTrainer::GetDumpPath(int tid) {
  if (user_define_dump_filename_ != "") {
    return string::format_string("%s/part-%s-%05d", dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str(), tid);
  }
  return string::format_string("%s/part-%03d-%05d", dump_fields_path_.c_str(),
                               mpi_rank_, tid);
}
T
Thunderbrook 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

void PSGPUTrainer::RegisterHeterCallback() {
  /*
  auto fleet_ptr = FleetWrapper::GetInstance();
  fleet_ptr->RegisterHeterCallback([this](int worker, int taskid) {
    // workers_[worker]->Schedule(taskid);
  });
  */
}

void PSGPUTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (size_t i = 0; i < places_.size(); ++i) {
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
  for (size_t num = 0; num < places_.size(); ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
130 131 132 133 134 135 136 137 138 139
  for (auto& var : main_program.Block(0).AllVars()) {
    if (var->Persistable()) {
      auto it = std::find(need_merge_var_names_.begin(),
                          need_merge_var_names_.end(), var->Name());
      if (it == need_merge_var_names_.end()) {
        VLOG(2) << "train param: " << var->Name();
        trainable_param_.push_back(var->Name());
      }
    }
  }
T
Thunderbrook 已提交
140 141 142 143
  place_ = place;
  return;
}

T
Thunderbrook 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
void PSGPUTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (size_t i = 0; i < places_.size(); ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
  }
}

T
Thunderbrook 已提交
162
void PSGPUTrainer::InitOtherEnv(const ProgramDesc& main_program) {
T
Thunderbrook 已提交
163 164 165
  if (need_dump_field_ || need_dump_param_) {
    InitDumpEnv();
  }
T
Thunderbrook 已提交
166 167 168 169 170
  VLOG(3) << "init other env done.";
}

void PSGPUTrainer::Run() {
  for (size_t thidx = 0; thidx < places_.size(); ++thidx) {
171 172 173 174 175 176 177
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
T
Thunderbrook 已提交
178 179 180 181 182 183 184 185
  }
}

Scope* PSGPUTrainer::GetWorkerScope(int thread_id) { return nullptr; }

template <typename T>
void PSGPUTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) {
  LoDTensor tmp_root;
186
  TensorCopySync(*root_tensor, platform::CPUPlace(), &tmp_root);
T
Thunderbrook 已提交
187 188
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
189
  TensorCopySync(*tensor, platform::CPUPlace(), &tmp_tensor);
T
Thunderbrook 已提交
190 191 192 193
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
194 195 196 197 198 199 200 201 202 203 204 205 206
  TensorCopySync(tmp_root, platform::CPUPlace(), root_tensor);
}

void PSGPUTrainer::MergeDenseParam() {
  auto thread_scope = workers_[0]->GetThreadScope();
  for (auto& name : trainable_param_) {
    VLOG(2) << "merge var " << name << " to root scope";
    Variable* root_var = root_scope_->FindVar(name);
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
    Variable* var = thread_scope->FindVar(name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    TensorCopySync((*tensor), root_tensor->place(), root_tensor);
  }
T
Thunderbrook 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
}

void PSGPUTrainer::Finalize() {
  for (auto& th : threads_) {
    th.join();
  }
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();

    for (size_t j = 0; j < places_.size(); j++) {
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
244
  MergeDenseParam();
T
Thunderbrook 已提交
245 246 247
  if (need_dump_field_ || need_dump_param_) {
    FinalizeDumpEnv();
  }
T
Thunderbrook 已提交
248 249 250 251 252
  root_scope_->DropKids();
}
}  // namespace framework
}  // namespace paddle
#endif