block_expand_op.cc 5.0 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/block_expand_op.h"

namespace paddle {
namespace operators {

class BlockExpandOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
G
gongweibao 已提交
26
    using namespace framework;
G
gongweibao 已提交
27
    PADDLE_ENFORCE(ctx->HasInput("X"),
G
gongweibao 已提交
28 29
                   "Input of BlockExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
G
gongweibao 已提交
30
                   "Output of BlockExpandOp op should not be null.");
G
gongweibao 已提交
31

G
gongweibao 已提交
32
    auto in_dim = ctx->GetInputDim("X");
G
gongweibao 已提交
33 34
    PADDLE_ENFORCE_EQ(in_dim.size(), 4,
                      "Input(X) format  must be 4D tensor, eg., NCHW.");
G
gongweibao 已提交
35 36
    PADDLE_ENFORCE_GE(in_dim[0], 1, "Input batchsize must >= 1.");

G
gongweibao 已提交
37 38 39 40 41 42
    int block_height = ctx->Attrs().Get<int>("blockHeight");
    int block_width = ctx->Attrs().Get<int>("blockWidth");
    int stride_height = ctx->Attrs().Get<int>("strideHeight");
    int stride_width = ctx->Attrs().Get<int>("strideWidth");
    int padding_height = ctx->Attrs().Get<int>("paddingHeight");
    int padding_width = ctx->Attrs().Get<int>("paddingWidth");
G
gongweibao 已提交
43 44 45

    int N = in_dim[0];
    int C = in_dim[1];
G
gongweibao 已提交
46 47
    int img_height = in_dim[2];
    int img_width = in_dim[3];
G
gongweibao 已提交
48

G
gongweibao 已提交
49 50
    int output_height = 0;
    int output_width = 0;
G
gongweibao 已提交
51

G
gongweibao 已提交
52 53 54 55
    get_blockexpand_output_shape(img_height, img_width, block_height,
                                 block_width, stride_height, stride_width,
                                 padding_height, padding_width, output_height,
                                 output_width);
G
gongweibao 已提交
56

G
gongweibao 已提交
57
    // The result of im2col is [output_height, output_width,
G
gongweibao 已提交
58 59
    // inputChannels, filterHeight, filterWidth], and it is easy to
    // reshape into [seqLength, stepSize], where seqLength is equal
G
gongweibao 已提交
60
    // output_height * output_width, stepSize is equal
G
gongweibao 已提交
61 62
    // input_channels * blockHeight * blockWidth
    ctx->SetOutputDim(
G
gongweibao 已提交
63
        "Out", {N, output_height, output_width, C, block_height, block_width});
G
gongweibao 已提交
64 65

    // ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
66 67 68 69 70 71 72 73
  }
};

class BlockExpandOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  BlockExpandOpMaker(framework::OpProto* proto,
                     framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
G
gongweibao 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87
    AddInput("X", R"DOC(
(Tensor)The input tensor has NCHW format.
    N: batch size
    C: channels
    H: height
    W: width
)DOC");
    AddOutput("Out", "(LodTensor)The output data of block_expand op,");
    AddAttr<int>("blockHeight", "(int)height of block.");
    AddAttr<int>("blockWidth", "(int)width of block.");
    AddAttr<int>("strideHeight", "(int)height of stride.");
    AddAttr<int>("strideWidth", "(int)width of stride.");
    AddAttr<int>("paddingHeight", "(int)height of padding.");
    AddAttr<int>("paddingWidth", "(int)width of padding.");
G
gongweibao 已提交
88 89
    AddComment(R"DOC(
Expand feature map to minibatch matrix.
G
gongweibao 已提交
90
- matirx height is: output_height * output_width
G
gongweibao 已提交
91
- matrix width is: blockHeight * blockWidth * channels
G
gongweibao 已提交
92

G
gongweibao 已提交
93 94
output_height = 
    1 + (2 * paddingHeight + img_height - blockHeight + strideHeight - 1) /
G
gongweibao 已提交
95
            strideHeight;
G
gongweibao 已提交
96 97
output_width = 
    1 + (2 * paddingWidth + img_width - blockWidth + strideWidth - 1) /
G
gongweibao 已提交
98
            strideWidth;
G
gongweibao 已提交
99 100

The expand method is the same with ExpandConvLayer, but saved the transposed
G
gongweibao 已提交
101
value. After expanding, The number of time steps are output_height * output_width
G
gongweibao 已提交
102 103
and the dimension of each time step is blockHeight * blockWidth * channels.
This layer can be used after convolution neural network, and before recurrent neural network.
G
gongweibao 已提交
104 105 106 107 108 109 110 111 112
)DOC");
  }
};

class BlockExpandGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
G
add gpu  
gongweibao 已提交
113 114 115 116
  void InferShape(framework::InferShapeContext* ctx) const override {
    using namespace framework;
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
G
gongweibao 已提交
117 118
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
G
add gpu  
gongweibao 已提交
119
  }
G
gongweibao 已提交
120 121 122 123 124 125 126
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(block_expand, ops::BlockExpandOp, ops::BlockExpandOpMaker,
G
add gpu  
gongweibao 已提交
127
            block_expand_grad, ops::BlockExpandGradOp);
G
gongweibao 已提交
128
REGISTER_OP_CPU_KERNEL(
G
gongweibao 已提交
129
    block_expand, ops::BlockExpandKernel<paddle::platform::CPUPlace, float>);
G
gongweibao 已提交
130 131 132
REGISTER_OP_CPU_KERNEL(
    block_expand_grad,
    ops::BlockExpandGradKernel<paddle::platform::CPUPlace, float>);