test_dynrnn_gradient_check.py 12.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yang Yu 已提交
17 18 19
import numpy
import random
import collections
20
import paddle
21
import paddle.fluid as fluid
Y
Yang Yu 已提交
22
import unittest
23
from decorator_helper import *
Y
Yang Yu 已提交
24 25 26


class Memory(object):
27

Y
Yang Yu 已提交
28 29 30 31 32 33 34 35 36
    def __init__(self, shape, dtype='float32'):
        self.ex = numpy.zeros(shape=shape, dtype=dtype)
        self.cur = None

    def update(self, val):
        assert val.shape == self.ex.shape
        assert val.dtype == self.ex.dtype
        self.cur = val

37
    def next(self):
Y
Yang Yu 已提交
38 39 40 41
        self.ex = self.cur
        self.cur = None

    def __next__(self):
42
        self.next()
Y
Yang Yu 已提交
43 44 45 46 47 48 49

    def reset(self):
        self.ex = numpy.zeros(shape=self.ex.shape, dtype=self.ex.dtype)
        self.cur = None


class Output(object):
50

Y
Yang Yu 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64
    def __init__(self):
        self.outs = []

    def next_sequence(self):
        self.outs.append([])

    def out(self, val):
        self.outs[-1].append(val)

    def last(self):
        return self.outs[-1][-1]


class BaseRNN(object):
65

Y
Yang Yu 已提交
66 67 68 69
    def __init__(self, ins, mems, params, outs, num_seq=5, max_seq_len=15):
        self.num_seq = num_seq
        self.inputs = collections.defaultdict(list)

70
        for _ in range(num_seq):
Y
Yang Yu 已提交
71 72 73 74 75
            seq_len = random.randint(1, max_seq_len - 1)
            for iname in ins:
                ishape = ins[iname].get('shape', None)
                idtype = ins[iname].get('dtype', 'float32')
                lst = []
76
                for _ in range(seq_len):
Y
Yang Yu 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
                    lst.append(numpy.random.random(size=ishape).astype(idtype))
                self.inputs[iname].append(lst)

        self.mems = dict()
        for mname in mems:
            mshape = mems[mname].get('shape', None)
            mdtype = mems[mname].get('dtype', 'float32')
            self.mems[mname] = Memory(shape=mshape, dtype=mdtype)

        self.params = dict()
        for pname in params:
            pshape = params[pname].get('shape', None)
            pdtype = params[pname].get('dtype', 'float32')
            self.params[pname] = numpy.random.random(size=pshape).astype(pdtype)

        self.outputs = dict()

        for oname in outs:
            self.outputs[oname] = Output()

    def step(self, **kwargs):
Y
Yang Yu 已提交
98
        raise NotImplementedError()
Y
Yang Yu 已提交
99 100 101 102 103 104

    def exe(self):
        retv = dict()
        for out in self.outputs:
            retv[out] = []

105
        for seq_id in range(self.num_seq):
Y
Yang Yu 已提交
106 107 108 109 110
            for mname in self.mems:
                self.mems[mname].reset()
            for out in self.outputs:
                self.outputs[out].next_sequence()

111
            iname0 = list(self.inputs.keys())[0]
Y
Yang Yu 已提交
112 113
            seq_len = len(self.inputs[iname0][seq_id])

114
            for step_id in range(seq_len):
Y
Yang Yu 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
                xargs = dict()

                for iname in self.inputs:
                    xargs[iname] = self.inputs[iname][seq_id][step_id]

                for mname in self.mems:
                    xargs[mname] = self.mems[mname]

                for pname in self.params:
                    xargs[pname] = self.params[pname]

                for out in self.outputs:
                    xargs[out] = self.outputs[out]

                self.step(**xargs)

                for mname in self.mems:
                    next(self.mems[mname])

            for out in self.outputs:
                retv[out].append(self.outputs[out].last())

        for out in retv:
            retv[out] = numpy.array(retv[out])
        return retv

    def to_feed(self, place):
        feed_dict = dict()

        for iname in self.inputs:
145
            lod = []
Y
Yang Yu 已提交
146
            np_flatten = []
147
            for seq_id in range(len(self.inputs[iname])):
Y
Yang Yu 已提交
148
                seq_len = len(self.inputs[iname][seq_id])
149
                lod.append(seq_len)
Y
Yang Yu 已提交
150 151 152 153
                np_flatten.extend(self.inputs[iname][seq_id])

            t = fluid.Tensor()
            t.set(numpy.array(np_flatten), place)
154
            t.set_recursive_sequence_lengths([lod])
Y
Yang Yu 已提交
155 156 157 158 159 160
            feed_dict[iname] = t

        for pname in self.params:
            feed_dict[pname] = self.params[pname]
        return feed_dict

Y
Yang Yu 已提交
161
    def get_numeric_gradient_of_param(self, param_name, delta=0.001):
Y
Yang Yu 已提交
162
        p = self.params[param_name]
Y
Yang Yu 已提交
163 164 165
        if len(p.shape) != 2:
            raise ValueError("Not support get numeric gradient of an parameter,"
                             " which is not matrix")
Y
Yang Yu 已提交
166 167
        g = numpy.zeros(shape=p.shape, dtype=p.dtype)

168 169
        for i in range(p.shape[0]):
            for j in range(p.shape[1]):
Y
Yang Yu 已提交
170 171 172 173 174 175 176
                o = p[i][j]
                p[i][j] += delta
                pos = self._exe_mean_out_()
                p[i][j] -= 2 * delta
                neg = self._exe_mean_out_()
                p[i][j] = o
                g[i][j] = (pos - neg) / (delta * 2)
Y
Yang Yu 已提交
177 178
        return g

Y
Stash  
Yang Yu 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192
    def get_numeric_gradient_of_input(self,
                                      input_name,
                                      delta=0.001,
                                      return_one_tensor=True):
        ipt = self.inputs[input_name]
        grad = []

        for seq in ipt:
            seq_grad = []
            for item in seq:
                item_grad = numpy.zeros(shape=item.shape, dtype=item.dtype)
                if len(item.shape) != 1:
                    raise ValueError("Not support")

193
                for i in range(len(item)):
Y
Stash  
Yang Yu 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206
                    o = item[i]
                    item[i] += delta
                    pos = self._exe_mean_out_()
                    item[i] -= 2 * delta
                    neg = self._exe_mean_out_()
                    item[i] = o
                    item_grad[i] = (pos - neg) / (delta * 2)
                seq_grad.append(item_grad)
            grad.append(seq_grad)

        if not return_one_tensor:
            return grad

207
        for i in range(len(grad)):
Y
Stash  
Yang Yu 已提交
208 209 210 211
            grad[i] = numpy.concatenate(grad[i])
        grad = numpy.concatenate(grad)
        return grad

Y
Yang Yu 已提交
212 213
    def _exe_mean_out_(self):
        outs = self.exe()
214
        return numpy.array([o.mean() for o in outs.values()]).mean()
Y
Yang Yu 已提交
215 216


217
class SeedFixedTestCase(unittest.TestCase):
218

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    @classmethod
    def setUpClass(cls):
        """Fix random seeds to remove randomness from tests"""
        cls._np_rand_state = numpy.random.get_state()
        cls._py_rand_state = random.getstate()

        numpy.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""
        numpy.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)


class TestSimpleMul(SeedFixedTestCase):
Y
Yang Yu 已提交
236 237 238 239 240 241 242
    DATA_NAME = 'X'
    DATA_WIDTH = 32
    PARAM_NAME = 'W'
    HIDDEN_WIDTH = 10
    OUT_NAME = 'Out'

    class SimpleMul(BaseRNN):
243

Y
Yang Yu 已提交
244 245
        def __init__(self):
            base = TestSimpleMul
246 247 248 249 250 251 252 253
            super(base.SimpleMul,
                  self).__init__({base.DATA_NAME: {
                      'shape': [base.DATA_WIDTH]
                  }}, {}, {
                      base.PARAM_NAME: {
                          'shape': [base.DATA_WIDTH, base.HIDDEN_WIDTH]
                      }
                  }, [base.OUT_NAME])
Y
Yang Yu 已提交
254 255 256 257

        def step(self, X, W, Out):
            Out.out(numpy.matmul(X, W))

Y
Yang Yu 已提交
258 259 260 261
    # Test many times in local to ensure the random seed cannot breaks CI
    # @many_times(10)
    @prog_scope()
    def test_forward_backward(self):
Y
Stash  
Yang Yu 已提交
262
        py_rnn = TestSimpleMul.SimpleMul()
263 264 265
        dat = fluid.layers.data(name=self.DATA_NAME,
                                shape=[self.DATA_WIDTH],
                                lod_level=1)
Y
Stash  
Yang Yu 已提交
266
        dat.stop_gradient = False
Y
Yang Yu 已提交
267 268 269 270 271

        rnn = fluid.layers.DynamicRNN()
        with rnn.block():
            d = rnn.step_input(dat)
            o = fluid.layers.fc(input=d,
Y
Yang Yu 已提交
272
                                param_attr=self.PARAM_NAME,
Y
Yang Yu 已提交
273
                                bias_attr=False,
Y
Yang Yu 已提交
274
                                size=self.HIDDEN_WIDTH,
Y
Yang Yu 已提交
275 276 277 278 279
                                act=None)
            rnn.output(o)

        out = rnn()
        out = fluid.layers.sequence_pool(out, pool_type='last')
280
        loss = paddle.mean(out)
Y
Update  
Yang Yu 已提交
281
        fluid.backward.append_backward(loss)
Y
Yang Yu 已提交
282 283 284

        cpu = fluid.CPUPlace()
        exe = fluid.Executor(cpu)
285
        out, w_g, i_g = list(
286 287
            map(
                numpy.array,
288 289
                exe.run(feed=py_rnn.to_feed(cpu),
                        fetch_list=[
290 291
                            out, self.PARAM_NAME + "@GRAD",
                            self.DATA_NAME + "@GRAD"
292 293
                        ],
                        return_numpy=False)))
Y
Stash  
Yang Yu 已提交
294
        out_by_python = py_rnn.exe()[self.OUT_NAME]
Y
Yang Yu 已提交
295
        self.assertTrue(numpy.allclose(out, out_by_python))
Y
Stash  
Yang Yu 已提交
296
        w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
Y
Yang Yu 已提交
297
        self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.05))
Y
Stash  
Yang Yu 已提交
298 299 300 301
        i_g_num = py_rnn.get_numeric_gradient_of_input(
            input_name=self.DATA_NAME)
        i_g_num = i_g_num.reshape(i_g.shape)
        self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.05))
Y
Yang Yu 已提交
302 303


304
class TestSimpleMulWithMemory(SeedFixedTestCase):
Y
Yang Yu 已提交
305
    DATA_WIDTH = 32
Y
Stash  
Yang Yu 已提交
306
    HIDDEN_WIDTH = 20
Y
Yang Yu 已提交
307 308 309 310
    DATA_NAME = 'X'
    PARAM_NAME = 'W'

    class SimpleMulWithMemory(BaseRNN):
311

Y
Yang Yu 已提交
312
        def __init__(self):
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
            super(TestSimpleMulWithMemory.SimpleMulWithMemory, self).__init__(
                {
                    TestSimpleMulWithMemory.DATA_NAME: {
                        'shape': [TestSimpleMulWithMemory.DATA_WIDTH]
                    }
                }, {'Mem': {
                    'shape': [TestSimpleMulWithMemory.HIDDEN_WIDTH]
                }}, {
                    TestSimpleMulWithMemory.PARAM_NAME: {
                        'shape': [
                            TestSimpleMulWithMemory.DATA_WIDTH,
                            TestSimpleMulWithMemory.HIDDEN_WIDTH
                        ]
                    }
                }, ['Out'])
Y
Yang Yu 已提交
328 329 330 331 332 333 334 335 336

        def step(self, X, Mem, W, Out):
            o = numpy.matmul(X, W)
            assert isinstance(Mem, Memory)
            o += Mem.ex
            Mem.update(o)
            assert isinstance(Out, Output)
            Out.out(o)

Y
Yang Yu 已提交
337 338
    # many_times used locally for debug. Make sure the calculation is stable.
    # @many_times(10)
Y
Yang Yu 已提交
339 340 341
    @prog_scope()
    def test_forward_backward(self):
        py_rnn = TestSimpleMulWithMemory.SimpleMulWithMemory()
342 343 344
        data = fluid.layers.data(name=self.DATA_NAME,
                                 shape=[self.DATA_WIDTH],
                                 lod_level=1)
Y
Stash  
Yang Yu 已提交
345
        data.stop_gradient = False
Y
Yang Yu 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        rnn = fluid.layers.DynamicRNN()
        with rnn.block():
            d = rnn.step_input(data)
            mem = rnn.memory(value=0.0, shape=[self.HIDDEN_WIDTH])
            hidden = fluid.layers.fc(input=d,
                                     size=self.HIDDEN_WIDTH,
                                     param_attr=self.PARAM_NAME,
                                     bias_attr=False,
                                     act=None)
            o = fluid.layers.elementwise_add(x=hidden, y=mem)
            rnn.update_memory(mem, o)
            rnn.output(o)

        out = rnn()
        last = fluid.layers.sequence_pool(input=out, pool_type='last')
361
        loss = paddle.mean(last)
Y
Update  
Yang Yu 已提交
362
        fluid.backward.append_backward(loss)
Y
Yang Yu 已提交
363 364 365

        cpu = fluid.CPUPlace()
        exe = fluid.Executor(cpu)
Y
Stash  
Yang Yu 已提交
366
        feed = py_rnn.to_feed(cpu)
367
        last_np, w_g, i_g = list(
368 369
            map(
                numpy.array,
370 371
                exe.run(feed=feed,
                        fetch_list=[
372 373
                            last, self.PARAM_NAME + "@GRAD",
                            self.DATA_NAME + "@GRAD"
374 375 376
                        ],
                        return_numpy=False)))
        last_by_py, = list(py_rnn.exe().values())
Y
Stash  
Yang Yu 已提交
377
        w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
Y
Yang Yu 已提交
378
        self.assertTrue(numpy.allclose(last_np, last_by_py))
Y
Yang Yu 已提交
379

Y
Stash  
Yang Yu 已提交
380 381 382 383 384 385 386
        self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.1))
        i_g_num = py_rnn.get_numeric_gradient_of_input(self.DATA_NAME)
        i_g_num = i_g_num.reshape(i_g.shape)

        # Since this RNN has many float add. The number could be not stable.
        # rtol = 0.1
        self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.1))
Y
Yang Yu 已提交
387 388


Y
Yang Yu 已提交
389 390
if __name__ == '__main__':
    unittest.main()