fuse_optimizer_op_pass.cc 12.2 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
//   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/fuse_optimizer_op_pass.h"
#include <algorithm>
#include <unordered_set>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace framework {
namespace details {

void FuseOptimizerOpPass::ApplyImpl(ir::Graph *graph) const {
  ir::Graph &result = *graph;

  auto &places = Get<const std::vector<platform::Place>>(kPlaces);
  auto &local_scopes = Get<const std::vector<Scope *>>(kLocalScopes);

  const std::string fuse_op_type = GetOpType();
C
chengduo 已提交
32 33 34
  std::vector<std::string> aux_var_names = GetAuxiliaryVarNames();
  aux_var_names.emplace_back(kParam);
  aux_var_names.emplace_back(kGrad);
C
chengduo 已提交
35 36 37 38 39 40 41 42 43 44

  // Step 1: Get the specified op and auxiliary variables.
  std::vector<ir::Node *> topo_nodes = ir::TopologySortOperations(result);
  std::unordered_map<std::string, std::vector<std::string>> aux_var_set;
  std::vector<ir::Node *> opt_ops;
  for (auto &node : topo_nodes) {
    GetSpecifiedOpsAndVars(fuse_op_type, aux_var_names, node, &opt_ops,
                           &aux_var_set);
  }

C
chengduo 已提交
45
  VLOG(6) << "Find " << fuse_op_type << " operators: " << opt_ops.size();
C
chengduo 已提交
46 47 48 49 50
  if (opt_ops.size() == 0) {
    return;
  }

  if (result.Has(kFusedOptType)) {
C
chengduo 已提交
51 52
    VLOG(6) << "Currently only support fusing one type optimizer op. Has fused "
            << result.Get<FusedOptType>(kFusedOptType);
C
chengduo 已提交
53 54 55 56 57 58 59 60 61 62 63 64
    return;
  } else {
    result.Set(kFusedOptType, new FusedOptType);
  }
  result.Get<FusedOptType>(kFusedOptType) = fuse_op_type;

  // Step 2: Insert fused_var_name to FusedVars, and the FusedVars need be
  // initialized in scopes before execution.
  if (!result.Has(kFusedVars)) {
    result.Set(kFusedVars, new FusedVars);
  }
  std::unordered_map<std::string, std::string> fused_vars_name;
C
chengduo 已提交
65
  fused_vars_name.reserve(aux_var_names.size());
C
chengduo 已提交
66 67 68 69 70 71
  auto &fused_var_set = result.Get<FusedVars>(kFusedVars);
  const std::string prefix(kFusedVarNamePrefix);
  // NOTE: the fused_var_name should be unique.
  for (auto &var_name : aux_var_names) {
    auto fused_var_name = prefix + "_" + fuse_op_type + "_" + var_name + "_" +
                          aux_var_set[var_name][0];
C
chengduo 已提交
72
    VLOG(6) << var_name << ": " << fused_var_name;
C
chengduo 已提交
73 74 75 76 77 78
    fused_vars_name.emplace(var_name, fused_var_name);
    PADDLE_ENFORCE_EQ(fused_var_set.count(fused_var_name), 0);
    fused_var_set.insert(fused_var_name);
  }

  // Step 3: Get the fused Gradient's name
C
chengduo 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  bool grad_fused = false;
  if (result.Has(kParamsAndGrads)) {
    auto &params_grads = result.Get<ParamsAndGrads>(kParamsAndGrads);
    PADDLE_ENFORCE_EQ(
        params_grads.size(), aux_var_set.at(kGrad).size(),
        "The number of gradients and optimizer ops is not equal.");
    std::unordered_set<std::string> opt_grad_set(aux_var_set.at(kGrad).begin(),
                                                 aux_var_set.at(kGrad).end());
    size_t same_grad_num = 0;
    for (auto &p_g : params_grads) {
      if (opt_grad_set.count(p_g.second)) {
        ++same_grad_num;
      }
    }

    // NOTE(zcd): the gradient of kParamsAndGrads may be different with the
    // kGrad.
    if (same_grad_num == aux_var_set.at(kGrad).size()) {
      if (!result.Has(kFusedGrads)) {
        PADDLE_THROW(
            "The alloc_continuous_space_for_grad_pass should be called before "
            "this pass.");
      }
      auto &fused_grad = result.Get<FusedGrads>(kFusedGrads);
      auto &fused_vars = result.Get<FusedVars>(kFusedVars);
      auto iter = std::find(fused_vars.begin(), fused_vars.end(), fused_grad);
      PADDLE_ENFORCE(iter != fused_vars.end(), "Not find the fused_grad.");
      fused_vars_name[kGrad] = fused_grad;

      // Sort the parameters and auxiliary variables according
      // to parameters' name to make variables' name correspond correctly.
      SortParametersAndAuxVars(params_grads, &aux_var_set, &opt_ops);
      grad_fused = true;
    }
  }

  // Step 4: Alloc continuous space for Parameters and AuxiliaryVar(e.g.
C
chengduo 已提交
116
  // Moment1, Moment2, Beta1Pow, Beta2Pow) of all the optimizer ops separately.
C
chengduo 已提交
117 118 119 120 121 122
  aux_var_names.pop_back();
  if (!grad_fused) {
    InitFusedGradsAndAllocSpaceForGrads(
        places, local_scopes, aux_var_set.at(kParam), aux_var_set.at(kGrad),
        fused_vars_name.at(kGrad), &result);
  }
C
chengduo 已提交
123 124 125
  InitFusedVarsAndAllocSpaceForVars(places, local_scopes, aux_var_names,
                                    aux_var_set, fused_vars_name);

C
chengduo 已提交
126
  // Step 5: Fuse optimizer Ops and Scale Ops
C
chengduo 已提交
127 128
  FuseOptimizerOps(aux_var_set, fused_vars_name, opt_ops, &result);

C
chengduo 已提交
129
  // Step 6: Remove optimizer Ops
C
chengduo 已提交
130 131 132 133 134
  for (auto &opt_op : opt_ops) {
    graph->RemoveNode(opt_op);
  }
}

C
chengduo 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
void FuseOptimizerOpPass::InitFusedGradsAndAllocSpaceForGrads(
    const std::vector<platform::Place> &places,
    const std::vector<Scope *> &local_scopes,
    const std::vector<std::string> &params,
    const std::vector<std::string> &grads, const std::string &fused_grad_name,
    ir::Graph *result) const {
  // Get Var Nodes
  std::unordered_map<std::string, ir::Node *> vars;
  for (ir::Node *node : result->Nodes()) {
    if (node->IsVar() && node->Var()) {
      // Note: The graph may have the same name node. For example, parameter
      // is the input of operator and it also is the output of optimizer;
      vars.emplace(node->Var()->Name(), node);
    }
  }
  // Init Grads
  for (auto it = local_scopes.rbegin(); it != local_scopes.rend(); ++it) {
    auto &scope = *it;
C
chengduo 已提交
153
    VLOG(6) << "Init: " << fused_grad_name;
C
chengduo 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    PADDLE_ENFORCE(scope->FindVar(fused_grad_name) == nullptr,
                   "%s has existed in scope.", fused_grad_name);
    scope->Var(fused_grad_name)->GetMutable<LoDTensor>();

    for (auto &grad_var_name : grads) {
      auto iter = vars.find(grad_var_name);
      PADDLE_ENFORCE(iter != vars.end());
      PADDLE_ENFORCE_NOT_NULL(iter->second->Var());
      PADDLE_ENFORCE_EQ(iter->second->Var()->GetType(),
                        proto::VarType::LOD_TENSOR);
      scope->Var(grad_var_name)->GetMutable<LoDTensor>();
    }
  }
  // Define Ops
  ProgramDesc program_desc;
  auto *global_block = program_desc.MutableBlock(0);
  AppendAllocContinuousSpace(params, grads, fused_grad_name, global_block,
                             false, false);
  // Run Ops
  RunInitOps(places, local_scopes, *global_block);
}

C
chengduo 已提交
176 177 178 179 180 181 182
void FuseOptimizerOpPass::InitFusedVarsAndAllocSpaceForVars(
    const std::vector<platform::Place> &places,
    const std::vector<Scope *> &local_scopes,
    const std::vector<std::string> &aux_var_names,
    const std::unordered_map<std::string, std::vector<std::string>>
        &aux_var_set,
    const std::unordered_map<std::string, std::string> &fused_vars_name) const {
C
chengduo 已提交
183 184 185 186
  // Init Vars
  for (auto &var_name : aux_var_names) {
    auto &fused_var_name = fused_vars_name.at(var_name);
    InitVars(local_scopes, fused_var_name);
C
chengduo 已提交
187
  }
C
chengduo 已提交
188
  // Define Ops
C
chengduo 已提交
189 190 191
  ProgramDesc program_desc;
  auto *global_block = program_desc.MutableBlock(0);
  for (auto &var_name : aux_var_names) {
C
chengduo 已提交
192 193 194
    AppendAllocContinuousSpace(
        aux_var_set.at(var_name), aux_var_set.at(var_name),
        fused_vars_name.at(var_name), global_block, true);
C
chengduo 已提交
195
  }
C
chengduo 已提交
196 197 198
  // Run Ops
  RunInitOps(places, local_scopes, *global_block);
}
C
chengduo 已提交
199

C
chengduo 已提交
200 201 202
void FuseOptimizerOpPass::RunInitOps(const std::vector<platform::Place> &places,
                                     const std::vector<Scope *> &local_scopes,
                                     const BlockDesc &global_block) const {
C
chengduo 已提交
203
  for (size_t i = 0; i < local_scopes.size(); ++i) {
C
chengduo 已提交
204
    for (auto &op_desc : global_block.AllOps()) {
C
chengduo 已提交
205 206 207 208 209 210
      auto op = OpRegistry::CreateOp(*op_desc);
      op->Run(*local_scopes[i], places[i]);
    }
  }
}

C
chengduo 已提交
211 212 213 214 215 216 217
void FuseOptimizerOpPass::InitVars(const std::vector<Scope *> &local_scopes,
                                   const std::string &fused_var_name) const {
  // Alloc parameters and auxiliary vars in the respective scope.
  size_t idx = local_scopes.size();
  for (auto iter = local_scopes.rbegin(); iter != local_scopes.rend();
       ++iter, --idx) {
    auto &scope = *iter;
C
chengduo 已提交
218
    VLOG(6) << "Init: " << fused_var_name;
C
chengduo 已提交
219 220 221 222 223 224
    PADDLE_ENFORCE(scope->FindVar(fused_var_name) == nullptr,
                   "%s has exist in scope[%d]", fused_var_name, idx);
    scope->Var(fused_var_name)->GetMutable<LoDTensor>();
  }
}

C
chengduo 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
void FuseOptimizerOpPass::SortParametersAndAuxVars(
    const std::vector<std::pair<std::string, std::string>> &params_grads,
    std::unordered_map<std::string, std::vector<std::string>> *aux_vars_set,
    std::vector<ir::Node *> *ops) const {
  PADDLE_ENFORCE_NE(aux_vars_set->count("Param"), static_cast<size_t>(0));
  auto &param_vec = aux_vars_set->at("Param");

  std::vector<size_t> param_sort_idx;
  param_sort_idx.reserve(param_vec.size());

  for (auto &p_g : params_grads) {
    auto iter = std::find(param_vec.begin(), param_vec.end(), p_g.first);
    PADDLE_ENFORCE(iter != param_vec.end());
    auto idx = std::distance(param_vec.begin(), iter);
    param_sort_idx.emplace_back(idx);
  }

  for (auto &aux_vars : *aux_vars_set) {
    std::vector<std::string> sorted_vars;
    sorted_vars.reserve(aux_vars.second.size());
    for (size_t i = 0; i < aux_vars.second.size(); ++i) {
      sorted_vars.emplace_back(aux_vars.second.at(param_sort_idx[i]));
    }
    std::swap(aux_vars.second, sorted_vars);

    std::stringstream out;
    for (auto &var_name : aux_vars.second) {
      out << var_name << " ";
    }
C
chengduo 已提交
254
    VLOG(6) << aux_vars.first << ": " << out.str();
C
chengduo 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  }

  std::vector<ir::Node *> sorted_ops;
  sorted_ops.reserve(ops->size());
  for (size_t i = 0; i < ops->size(); ++i) {
    sorted_ops.emplace_back(ops->at(param_sort_idx[i]));
  }
  std::swap(*ops, sorted_ops);
}

void FuseOptimizerOpPass::GetSpecifiedOpsAndVars(
    const std::string &op_type, const std::vector<std::string> &aux_vars_name,
    ir::Node *node, std::vector<ir::Node *> *ops,
    std::unordered_map<std::string, std::vector<std::string>> *aux_args_name)
    const {
  if (node->Op()->Type() != op_type) return;

C
chengduo 已提交
272
  std::stringstream out;
C
chengduo 已提交
273 274 275 276
  for (auto &var_n : aux_vars_name) {
    auto arg_names = node->Op()->Input(var_n);
    PADDLE_ENFORCE_EQ(arg_names.size(), static_cast<size_t>(1));
    (*aux_args_name)[var_n].emplace_back(arg_names[0]);
C
chengduo 已提交
277
    out << var_n << ", " << arg_names[0] << "; ";
C
chengduo 已提交
278
  }
C
chengduo 已提交
279
  VLOG(7) << out.str();
C
chengduo 已提交
280 281 282 283
  ops->emplace_back(node);
}

void FuseOptimizerOpPass::AppendAllocContinuousSpace(
C
chengduo 已提交
284 285 286
    const std::vector<std::string> &in_args,
    const std::vector<std::string> &out_args, const std::string &fused_out_arg,
    BlockDesc *global_block, bool copy_data, bool check_name) const {
C
chengduo 已提交
287 288
  auto op_desc = global_block->AppendOp();
  op_desc->SetType("alloc_continuous_space");
C
chengduo 已提交
289 290 291
  op_desc->SetInput("Input", in_args);
  op_desc->SetOutput("Output", out_args);
  op_desc->SetOutput("FusedOutput", {fused_out_arg});
C
chengduo 已提交
292
  op_desc->SetAttr("copy_data", copy_data);
C
chengduo 已提交
293
  op_desc->SetAttr("check_name", check_name);
C
chengduo 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
}

void FuseOptimizerOpPass::InserInputAndOutputForOptOps(
    const std::vector<ir::Node *> &opt_ops, ir::Node *opt_node) const {
  std::unordered_set<ir::Node *> inputs;
  std::unordered_set<ir::Node *> outputs;
  for (auto opt_op : opt_ops) {
    // set inputs
    inputs.insert(opt_op->inputs.begin(), opt_op->inputs.end());
    for (auto &input : opt_op->inputs) {
      replace(input->outputs.begin(), input->outputs.end(), opt_op, opt_node);
    }
    // set outputs
    outputs.insert(opt_op->outputs.begin(), opt_op->outputs.end());
    for (auto &output : opt_op->outputs) {
      replace(output->inputs.begin(), output->inputs.end(), opt_op, opt_node);
    }
  }
  opt_node->inputs.insert(opt_node->inputs.begin(), inputs.begin(),
                          inputs.end());
  opt_node->outputs.insert(opt_node->outputs.begin(), outputs.begin(),
                           outputs.end());
}
}  // namespace details
}  // namespace framework
}  // namespace paddle