elementwise_op.cc 8.6 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class ElementwiseWeightOpConverter : public OpConverter {
 public:
  ElementwiseWeightOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
29
    VLOG(3) << "convert a fluid elementwise op to tensorrt IScaleLayer";
N
nhzlx 已提交
30 31 32 33 34 35 36 37 38 39 40 41

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    nvinfer1::Dims dims_x = X->getDimensions();
    PADDLE_ENFORCE(dims_x.nbDims >= 3);

    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
    PADDLE_ENFORCE_NOT_NULL(Y_v);
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
N
nhzlx 已提交
42 43

    platform::CPUPlace cpu_place;
N
nhzlx 已提交
44 45
    std::unique_ptr<framework::LoDTensor> weight_tensor(
        new framework::LoDTensor());
N
nhzlx 已提交
46
    weight_tensor->Resize(Y_t->dims());
N
nhzlx 已提交
47
    TensorCopySync((*Y_t), cpu_place, weight_tensor.get());
N
nhzlx 已提交
48 49
    auto* weight_data =
        weight_tensor->mutable_data<float>(platform::CPUPlace());
N
nhzlx 已提交
50 51
    auto scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;

N
nhzlx 已提交
52
    std::vector<int> dims_y = framework::vectorize2int(weight_tensor->dims());
N
nhzlx 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    if (static_cast<int>(dims_y.size()) == dims_x.nbDims + 1) {
      if (dims_y[0] == 1) dims_y.erase(dims_y.begin());
    }

    if (static_cast<int>(dims_y.size()) == 1 && dims_y[0] == dims_x.d[0]) {
      scale_mode = nvinfer1::ScaleMode::kCHANNEL;
    } else if (static_cast<int>(dims_y.size()) == dims_x.nbDims &&
               dims_y[0] == dims_x.d[0]) {
      scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;
      for (int i = 1; i < dims_x.nbDims; i++) {
        if (dims_y[i] != dims_x.d[i]) {
          scale_mode = nvinfer1::ScaleMode::kCHANNEL;
          break;
        }
      }
      if (scale_mode == nvinfer1::ScaleMode::kCHANNEL) {
        for (int i = 1; i < dims_x.nbDims; i++) {
          if (dims_y[i] != 1)
            PADDLE_THROW(
                "TensorRT unsupported weight shape for Elementwise op!");
        }
      }
    } else {
      PADDLE_THROW("TensorRT unsupported weight Shape for Elementwise op!");
    }

N
nhzlx 已提交
79 80 81
    TensorRTEngine::Weight shift_weights{
        nvinfer1::DataType::kFLOAT, static_cast<void*>(weight_data),
        weight_tensor->memory_size() / sizeof(float)};
N
nhzlx 已提交
82 83 84 85 86 87 88 89 90
    TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
    TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};

    nvinfer1::IScaleLayer* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Scale, *const_cast<nvinfer1::ITensor*>(X), scale_mode,
        shift_weights.get(), scale_weights.get(), power_weights.get());
    auto output_name = op_desc.Output("Out")[0];
N
nhzlx 已提交
91

92 93
    layer->setName(("elementwise_add (Output: " + output_name + ")").c_str());
    layer->getOutput(0)->setName(output_name.c_str());
N
nhzlx 已提交
94
    engine_->weight_map[op_desc.Input("Y").front()] = std::move(weight_tensor);
N
nhzlx 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    engine_->SetITensor(output_name, layer->getOutput(0));
    if (test_mode) {  // the test framework can not determine which is the
                      // output, so place the declaration inside.
      engine_->DeclareOutput(output_name);
    }
  }
};

class ElementwiseTensorOpConverter : public OpConverter {
 public:
  ElementwiseTensorOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
111
    VLOG(3) << "convert a fluid elementwise op to tensorrt IScaleLayer";
N
nhzlx 已提交
112 113 114 115 116 117 118 119 120 121

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
    nvinfer1::Dims dims_x = X->getDimensions();
    nvinfer1::Dims dims_y = Y->getDimensions();

N
nhzlx 已提交
122
    // The two input tensor should have the same dims
N
nhzlx 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    PADDLE_ENFORCE(dims_x.nbDims >= 3);
    if (dims_x.nbDims == dims_y.nbDims) {
      for (int i = 0; i < dims_x.nbDims; i++) {
        if (dims_x.d[i] != dims_y.d[i])
          PADDLE_THROW("TensorRT unsupported tensor shape for Elementwise op!");
      }
    } else {
      PADDLE_THROW("TensorRT unsupported tensor shape for Elementwise op!");
    }

    auto op_pair = ops.find(op_type_);
    if (op_pair == ops.end()) {
      PADDLE_THROW("Wrong elementwise op type!");
    }
    nvinfer1::IElementWiseLayer* layer = TRT_ENGINE_ADD_LAYER(
        engine_, ElementWise, *const_cast<nvinfer1::ITensor*>(X),
        *const_cast<nvinfer1::ITensor*>(Y), op_pair->second);

    auto output_name = op_desc.Output("Out")[0];
142 143
    layer->setName(("elementwise (Output: " + output_name + ")").c_str());
    layer->getOutput(0)->setName(output_name.c_str());
N
nhzlx 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    engine_->SetITensor(output_name, layer->getOutput(0));
    if (test_mode) {  // the test framework can not determine which is the
                      // output, so place the declaration inside.
      engine_->DeclareOutput(output_name);
    }
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(elementwise_add_weight, ElementwiseWeightOpConverter);

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);