test_tensordot.py 8.0 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import unittest
import paddle.fluid.core as core
import numpy as np
import itertools as it

np.set_printoptions(threshold=np.inf)


def tensordot_np(x, y, axes):
    if isinstance(axes, paddle.fluid.framework.Variable):
        axes = axes.tolist()

    # np.tensordot does not support empty axes
    if not axes:
        axes = 0
    if (isinstance(axes, (tuple, list))):
        if all(np.issubdtype(type(i), np.integer) for i in axes):
            axes = [axes, axes]
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]
            else:
                axes_y = axes_x
            len_axes_x, len_axes_y = len(axes_x), len(axes_y)
            if len_axes_x < len_axes_y:
                axes_x = axes_x + axes_y[len_axes_x:]
            elif len_axes_y < len_axes_x:
                axes_y = axes_y + axes_x[len_axes_y:]
            axes = [axes_x, axes_y]

    # np.tensordot does not support broadcast
    if (isinstance(axes, (tuple, list))):
        axes_x, axes_y = axes
    else:
        axes_x = list(range(x.ndim - axes, x.ndim))
        axes_y = list(range(axes))
    shape_x, shape_y = list(np.shape(x)), list(np.shape(y))
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = np.sum(y, dim_y)
            y = np.reshape(y, shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = np.sum(x, dim_x)
            x = np.reshape(x, shape_x)

    return np.tensordot(x, y, axes)


class TestTensordotAPI(unittest.TestCase):
    def setUp(self):
        self.set_dtype()
        self.set_input_shape()
        self.set_input_data()

    def set_dtype(self):
        self.dtype = np.float32

    def set_input_shape(self):
        self.x_shape = [5, 5, 5, 5]
        self.y_shape = [5, 5, 5, 5]

    def set_input_data(self):
        self.x = np.random.random(self.x_shape).astype(self.dtype)
        self.y = np.random.random(self.y_shape).astype(self.dtype)
        self.all_axes = [2]

    def run_dygraph(self, place):
        paddle.disable_static()
        x = paddle.to_tensor(self.x, place=place)
        y = paddle.to_tensor(self.y, place=place)
        paddle_res = paddle.tensordot(x, y, self.axes)
        np_res = tensordot_np(self.x, self.y, self.axes)
        np.testing.assert_allclose(paddle_res, np_res, rtol=1e-6)

    def run_static(self, place):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            x = paddle.static.data(
                name='x', shape=self.x_shape, dtype=self.dtype)
            y = paddle.static.data(
                name='y', shape=self.y_shape, dtype=self.dtype)
            z = paddle.tensordot(x, y, self.axes)
            exe = paddle.static.Executor(place)
            paddle_res = exe.run(feed={'x': self.x,
                                       'y': self.y},
                                 fetch_list=[z])
            np_res = tensordot_np(self.x, self.y, self.axes)
            np.testing.assert_allclose(paddle_res[0], np_res, rtol=1e-6)

    def test_cases(self):
        self.all_axes = []
        axial_index = range(4)
        all_permutations = list(it.permutations(axial_index, 0)) + list(
            it.permutations(axial_index, 1)) + list(
                it.permutations(axial_index, 2)) + list(
                    it.permutations(axial_index, 3)) + list(
                        it.permutations(axial_index, 4))
        self.all_axes.extend(list(i) for i in all_permutations)

        for axes_x in all_permutations:
            for axes_y in all_permutations:
                if len(axes_x) < len(axes_y):
                    supplementary_axes_x = axes_x + axes_y[len(axes_x):]
                    if any(
                            supplementary_axes_x.count(i) > 1
                            for i in supplementary_axes_x):
                        continue
                elif len(axes_y) < len(axes_x):
                    supplementary_axes_y = axes_y + axes_x[len(axes_y):]
                    if any(
                            supplementary_axes_y.count(i) > 1
                            for i in supplementary_axes_y):
                        continue
                self.all_axes.append([list(axes_x), list(axes_y)])

        self.all_axes.extend(range(5))

        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for axes in self.all_axes:
            self.axes = axes
            for place in places:
                self.run_dygraph(place)
                self.run_static(place)


class TestTensordotAPIFloat64(TestTensordotAPI):
    def set_dtype(self):
        self.dtype = np.float64


class TestTensordotAPIAxesType(TestTensordotAPI):
    def set_input_shape(self):
        self.x_shape = [3, 4, 4]
        self.y_shape = [4, 4, 5]

    def test_cases(self):
        self.all_axes = [
            0, 1, 2, (1, ), [1], ((1, ), ), ([1], ), ((2, 1), (0, )), (
                (1, 2), (0, 1)), ([1, 2], [0, 1]), ([1, 2], [0, 1]),
            [[1, 2], [0, 1]]
        ]

        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for axes in self.all_axes:
            self.axes = axes
            for place in places:
                self.run_dygraph(place)
                self.run_static(place)

        # The 'axes' with type 'Tensor' in tensordot is not available in static mode
        paddle.disable_static()
        for place in places:
            self.all_axes = [
                paddle.to_tensor([1]), (paddle.to_tensor([1])),
                (paddle.to_tensor([1, 2]), paddle.to_tensor([0, 1])),
                [paddle.to_tensor([1, 2]), paddle.to_tensor([0, 1])],
                paddle.to_tensor([[1, 2], [0, 1]])
            ]
            for axes in self.all_axes:
                self.axes = axes
                for place in places:
                    self.run_dygraph(place)

    def test_error(self):
        self.all_axes = [[[[0], [1]]], 0.1, -1, 100, [[1, 2], [0, 0]],
                         [[1, 2], [0, -1]], [0, 1, 2, 3]]
        paddle.disable_static()
        x = paddle.to_tensor(self.x)
        y = paddle.to_tensor(self.y)
        for axes in self.all_axes:
            with self.assertRaises(BaseException):
                paddle.tensordot(x, y, axes)


class TestTensordotAPIAxesTypeFloat64(TestTensordotAPIAxesType):
    def set_dtype(self):
        self.dtype = np.float64


class TestTensordotAPIBroadcastCase1(TestTensordotAPI):
    def set_input_shape(self):
        self.x_shape = [1, 1, 1, 5]
        self.y_shape = [1, 5, 1, 1]


class TestTensordotAPIBroadcastCase2(TestTensordotAPI):
    def set_input_shape(self):
        self.x_shape = [1, 5, 5, 5]
        self.y_shape = [1, 1, 1, 5]


class TestTensordotAPIBroadcastCase3(TestTensordotAPI):
    def set_input_shape(self):
        self.x_shape = [5, 5, 5, 1]
        self.y_shape = [5, 5, 1, 5]


class TestTensordotAPIBroadcastCase4(TestTensordotAPI):
    def set_input_shape(self):
        self.x_shape = [5, 5, 5, 1]
        self.y_shape = [1, 1, 1, 1]


class TestTensordotAPIBroadcastCase5(TestTensordotAPI):
    def set_input_shape(self):
        self.x_shape = [1, 1, 5, 5]
        self.y_shape = [5, 5, 1, 5]


if __name__ == "__main__":
    unittest.main()