dist_multi_trainer.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17
#include "io/fs.h"
18
#include "paddle/fluid/framework/data_feed_factory.h"
D
dongdaxiang 已提交
19
#include "paddle/fluid/framework/data_set.h"
20
#include "paddle/fluid/framework/device_worker_factory.h"
21
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
22 23 24 25 26
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

27 28
void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc,
                                  Dataset *dataset) {
29
  thread_num_ = trainer_desc.thread_num();
30
  SetDataset(dataset);
D
dongdaxiang 已提交
31

H
hutuxian 已提交
32
  ParseDumpConfig(trainer_desc);
X
xujiaqi01 已提交
33 34
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
T
Thunderbrook 已提交
35
  dump_file_num_ = trainer_desc.dump_file_num();
36
  const std::vector<paddle::framework::DataFeed *> readers =
37
      dataset->GetReaders();
T
Thunderbrook 已提交
38
  RegisterHeterCallback();
39 40
  thread_num_ = readers.size();
  workers_.resize(thread_num_);
41 42 43 44 45
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
46

47 48 49 50
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
51
    workers_[i]->SetDataFeed(readers[i]);
H
hutuxian 已提交
52 53 54 55 56
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
57
    workers_[i]->Initialize(trainer_desc);
T
Thunderbrook 已提交
58
    workers_[i]->SetWorkerNum(thread_num_);
59 60
  }

D
dongdaxiang 已提交
61
  VLOG(3) << "going to initialize pull dense worker";
62 63
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
D
dongdaxiang 已提交
64
  VLOG(3) << "initialize pull dense worker";
65
  SetDebug(trainer_desc.debug());
66 67
}

T
Thunderbrook 已提交
68 69 70 71 72 73 74
void DistMultiTrainer::RegisterHeterCallback() {
  auto fleet_ptr = FleetWrapper::GetInstance();
  fleet_ptr->RegisterHeterCallback([this](int worker, int taskid) {
    // workers_[worker]->Schedule(taskid);
  });
}

75 76 77 78 79
void DistMultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
T
Thunderbrook 已提交
80 81 82 83 84 85 86 87 88
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
H
hutuxian 已提交
89
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
T
Thunderbrook 已提交
90
  }
91 92
}

93 94 95 96 97 98 99 100
void DistMultiTrainer::InitTrainerEnv(const ProgramDesc &main_program,
                                      const platform::Place &place) {
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetPlace(place);
    workers_[i]->SetReaderPlace(place);
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
T
Thunderbrook 已提交
101 102 103
#ifdef PADDLE_WITH_PSLIB
    workers_[i]->CacheProgram(main_program);
#endif
104 105 106 107 108 109 110 111
  }
  // Scope* -> thread id, it will be used in push_dense op
  for (int i = 0; i < thread_num_; ++i) {
    Scope *thread_scope = workers_[i]->GetThreadScope();
    pull_dense_worker_->SetThreadIdByScope(thread_scope, i);
  }
}

112
void DistMultiTrainer::InitOtherEnv(const ProgramDesc &main_program) {
X
xujiaqi01 已提交
113
  if (need_dump_field_ || need_dump_param_) {
114 115
    InitDumpEnv();
  }
116
  pull_dense_worker_->SetRootScope(root_scope_);
117
  pull_dense_worker_->Start();
T
Thunderbrook 已提交
118 119 120 121 122
#ifdef PADDLE_WITH_PSLIB
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->GetXpuOpIndex();
  }
#endif
D
dongdaxiang 已提交
123
  VLOG(3) << "init other env done.";
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137
void DistMultiTrainer::Run() {
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
  }
}

138 139 140 141
Scope *DistMultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

142
void DistMultiTrainer::Finalize() {
143
  for (auto &th : threads_) {
144 145
    th.join();
  }
146
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
147 148 149 150 151 152 153 154 155 156 157 158 159
    Variable *root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor *root_tensor = root_var->GetMutable<LoDTensor>();
    for (int j = 1; j < thread_num_; j++) {
      Scope *cur_thread_scope = workers_[j]->GetThreadScope();
      Variable *thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      LoDTensor *thread_tensor = thread_var->GetMutable<LoDTensor>();
      if (root_tensor->numel() != thread_tensor->numel()) {
        continue;
      }
160 161 162 163 164 165 166 167 168 169 170 171
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
172 173 174 175 176
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }

X
xujiaqi01 已提交
177
  if (need_dump_field_ || need_dump_param_) {
178 179
    FinalizeDumpEnv();
  }
180
  pull_dense_worker_->Stop();
181
  root_scope_->DropKids();
182 183 184 185

  // flush local client push queue
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  fleet_ptr_->ClientFlush();
186 187
}

188 189 190 191 192 193 194 195 196
template <typename T>
void DistMultiTrainer::MergeToRootScope(LoDTensor *root_tensor,
                                        LoDTensor *tensor) {
  T *root_data = root_tensor->data<T>();
  T *data = tensor->data<T>();
  for (int i = 0; i < tensor->numel(); i++) {
    root_data[i] += data[i];
  }
}
197 198
}  // namespace framework
}  // namespace paddle