flatten_op.cc 17.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
B
Bai Yifan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/flatten_op.h"
16

17 18 19
#include <memory>
#include <string>
#include <unordered_map>
B
Bai Yifan 已提交
20
#include <vector>
21

22
#include "paddle/fluid/framework/infershape_utils.h"
B
Bai Yifan 已提交
23
#include "paddle/fluid/framework/op_registry.h"
24
#include "paddle/phi/core/infermeta_utils.h"
25
#include "paddle/phi/infermeta/backward.h"
26
#include "paddle/phi/infermeta/unary.h"
B
Bai Yifan 已提交
27 28 29 30

namespace paddle {
namespace operators {

31
class FlattenOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
32
 public:
33 34 35
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
36 37
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Flatten");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Flatten");
B
Bai Yifan 已提交
38 39
    const auto &axis = ctx->Attrs().Get<int>("axis");
    const auto &in_dims = ctx->GetInputDim("X");
40 41
    PADDLE_ENFORCE_GE(axis,
                      0,
42 43
                      platform::errors::InvalidArgument(
                          "The axis should be greater than or equal to 0."));
44
    PADDLE_ENFORCE_LE(
45 46
        axis,
        in_dims.size(),
47 48
        platform::errors::InvalidArgument(
            "The axis should be less than or equal to input tensor's rank."));
B
Bai Yifan 已提交
49 50

    const auto &out_dims = GetOutputShape(axis, in_dims);
51
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
B
Bai Yifan 已提交
52 53 54 55 56 57 58 59 60 61 62 63
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
  }

  static std::vector<int32_t> GetOutputShape(const int axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1, inner = 1;
    for (int i = 0; i < in_dims.size(); ++i) {
      if (i < axis) {
D
danleifeng 已提交
64 65 66 67 68
        if (in_dims[i] == -1 || outer == -1) {
          outer = -1;
        } else {
          outer *= in_dims[i];
        }
B
Bai Yifan 已提交
69
      } else {
D
danleifeng 已提交
70 71 72 73 74
        if (in_dims[i] == -1 || inner == -1) {
          inner = -1;
        } else {
          inner *= in_dims[i];
        }
B
Bai Yifan 已提交
75 76 77 78 79 80 81 82
      }
    }
    std::vector<int32_t> out_shape(2);
    out_shape[0] = outer;
    out_shape[1] = inner;
    return out_shape;
  }

83
 protected:
84
  phi::KernelKey GetExpectedKernelType(
85
      const framework::ExecutionContext &ctx) const override {
86 87
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
88
    return phi::KernelKey(input_data_type, ctx.GetPlace());
B
Bai Yifan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  }
};

class FlattenOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("axis",
                 "(int)"
                 "Indicate up to which input dimensions (exclusive) should be"
                 "flattened to the outer dimension of the output. The value"
                 "for axis must be in the range [0, R], where R is the rank of"
                 "the input tensor. When axis = 0, the shape of the output"
                 "tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
                 "input tensor is (d_0, d_1, ... d_n).")
        .SetDefault(1);
110 111
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
112 113
        .SetDefault(false)
        .AsExtra();
114 115 116 117
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
118 119
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
B
Bai Yifan 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a 2D matrix.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 2
  We get:
    Out.shape = (3 * 100, 4 * 100)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 0
  We get:
    Out.shape = (1, 3 * 100 * 100 * 4)
)DOC");
  }
};

145
class FlattenGradOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
146
 public:
147 148 149
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
B
Bai Yifan 已提交
150 151 152 153 154
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

155
 protected:
156
  phi::KernelKey GetExpectedKernelType(
157
      const framework::ExecutionContext &ctx) const override {
158 159
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
160
    return phi::KernelKey(input_data_type, ctx.GetPlace());
161 162 163 164 165 166 167 168
  }
};

template <typename T>
class FlattenGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

169
  void Apply(GradOpPtr<T> grad_op) const override {
170 171 172 173 174
    grad_op->SetType("flatten_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
B
Bai Yifan 已提交
175 176 177
  }
};

178 179 180 181 182
// FIXME(zcd): flatten2 adds an intermediate output(XShape) based on flatten,
// the XShape is used to carry the shape and lod of X which will be used in
// flatten_grad, in this way, the framework can reuse the memory of X
// immediately the flatten2_op is finished.
// Considering compatibility issues, we could not fix flatten2_op
183
class Flatten2Op : public framework::OperatorWithKernel {
184
 public:
185 186 187
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
188 189
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Flatten2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Flatten2");
190
    const auto &axis = ctx->Attrs().Get<int>("axis");
191
    const auto &in_dims = ctx->GetInputDim("X");
192 193
    PADDLE_ENFORCE_GE(axis,
                      0,
194 195
                      platform::errors::InvalidArgument(
                          "The axis should be greater than or equal to 0."));
196
    PADDLE_ENFORCE_LE(
197 198
        axis,
        in_dims.size(),
199 200
        platform::errors::InvalidArgument(
            "The axis should be less than or equal to input tensor's rank"));
201 202

    const auto &out_dims = FlattenOp::GetOutputShape(axis, in_dims);
203
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
204 205 206 207 208
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
209 210
    if (!ctx->HasOutput("XShape")) return;
    // OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Flatten2");
211 212 213 214 215
    std::vector<int64_t> xshape_dims(in_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      xshape_dims[i + 1] = in_dims[i];
    }
216
    ctx->SetOutputDim("XShape", phi::make_ddim(xshape_dims));
217 218
    ctx->ShareLoD("X", "XShape");
  }
219

220
  phi::KernelKey GetExpectedKernelType(
221 222 223
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
224
    return phi::KernelKey(input_data_type, ctx.GetPlace());
225
  }
226 227 228 229 230 231 232 233 234
};

class Flatten2OpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    FlattenOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
235 236
        .AsIntermediate()
        .AsExtra();
237 238 239
  }
};

H
hong 已提交
240 241
template <typename T>
class Flatten2GradOpMaker : public framework::SingleGradOpMaker<T> {
242
 public:
H
hong 已提交
243
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
244

245
  void Apply(GradOpPtr<T> grad_op) const override {
246
    grad_op->SetType("flatten2_grad");
H
hong 已提交
247 248 249 250
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
251 252 253
  }
};

254
class Flatten2GradOp : public framework::OperatorWithKernel {
255
 public:
256 257 258
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
259 260 261 262 263
    OP_INOUT_CHECK(
        context->HasInput("XShape"), "Input", "XShape", "Flatten2Grad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
264
                   "Flatten2Grad");
265
    auto xshape_dims = context->GetInputDim("XShape");
266
    auto x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
267 268 269 270
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

271
 protected:
272
  phi::KernelKey GetExpectedKernelType(
273
      const framework::ExecutionContext &ctx) const override {
274 275
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
276
    return phi::KernelKey(input_data_type, ctx.GetPlace());
277 278 279
  }
};

280 281 282 283 284
class FlattenContiguousRangeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FlattenContiguousRange");
285 286
    OP_INOUT_CHECK(
        ctx->HasOutput("Out"), "Output", "Out", "FlattenContiguousRange");
287 288 289
    const auto &start_axis = ctx->Attrs().Get<int>("start_axis");
    const auto &stop_axis = ctx->Attrs().Get<int>("stop_axis");

290 291 292 293 294 295 296 297
    // Construct MetaTensor for InferMeta Func
    using CompatMetaTensor = framework::CompatMetaTensor;
    CompatMetaTensor x(ctx->GetInputVarPtrs("X")[0], ctx->IsRuntime());
    CompatMetaTensor out(ctx->GetOutputVarPtrs("Out")[0], ctx->IsRuntime());
    std::unique_ptr<CompatMetaTensor> xshape(nullptr);
    if (ctx->HasOutput("XShape")) {
      xshape = std::move(std::unique_ptr<CompatMetaTensor>(new CompatMetaTensor(
          ctx->GetOutputVarPtrs("XShape")[0], ctx->IsRuntime())));
298
    }
299 300
    phi::FlattenWithXShapeInferMeta(
        x, start_axis, stop_axis, &out, xshape.get());
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
  }
};

class FlattenContiguousRangeOpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("start_axis",
                 "(int)"
                 "Indicate the input start dimension (exclusive) to flatten")
        .SetDefault(1);
    AddAttr<int>("stop_axis",
                 "(int)"
                 "Indicate the input stop dimension (exclusive) to flatten")
        .SetDefault(1);
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a new matrix according to start_axis and stop_axis.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    start_axis = 2, stop_axis = -1
  We get:
    Out.shape = (3, 100, 400)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    start_axis = 0, stop_axis = -1
  We get:
    Out.shape = (3 * 100 * 100 * 4)
)DOC");
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
346 347
        .AsIntermediate()
        .AsExtra();
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
  }
};

template <typename T>
class FlattenContiguousRangeGradOpMaker
    : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("flatten_contiguous_range_grad");
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

class FlattenContiguousRangeGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
371 372 373 374 375 376 377
    OP_INOUT_CHECK(context->HasInput("XShape"),
                   "Input",
                   "XShape",
                   "FlattenContiguousRangeGrad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
378
                   "FlattenContiguousRangeGrad");
379 380 381 382 383 384 385 386
    // Construct MetaTensor for InferMeta Func
    using CompatMetaTensor = framework::CompatMetaTensor;
    CompatMetaTensor xshape(context->GetInputVarPtrs("XShape")[0],
                            context->IsRuntime());
    CompatMetaTensor dx(
        context->GetOutputVarPtrs(framework::GradVarName("X"))[0],
        context->IsRuntime());
    phi::KernelWithXShapeInferMeta(xshape, &dx);
387 388 389
  }

 protected:
390
  phi::KernelKey GetExpectedKernelType(
391
      const framework::ExecutionContext &ctx) const override {
392 393 394
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(
                              ctx, framework::GradVarName("Out")),
                          ctx.GetPlace());
395 396
  }
};
397 398
DECLARE_INPLACE_OP_INFERER(FlattenOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(FlattenGradInplaceInferer,
399 400
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
401
DECLARE_NO_NEED_BUFFER_VARS_INFERER(FlattenGradNoNeedBufferVarsInferer, "X");
D
dzhwinter 已提交
402

B
Bai Yifan 已提交
403 404 405 406
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
407 408 409
REGISTER_OPERATOR(flatten,
                  ops::FlattenOp,
                  ops::FlattenOpMaker,
410 411
                  ops::FlattenGradOpMaker<paddle::framework::OpDesc>,
                  ops::FlattenGradOpMaker<paddle::imperative::OpBase>,
412
                  ops::FlattenOpInplaceInferer);
413 414
REGISTER_OPERATOR(flatten_grad,
                  ops::FlattenGradOp,
415 416
                  ops::FlattenGradInplaceInferer,
                  ops::FlattenGradNoNeedBufferVarsInferer);
417

418 419 420
REGISTER_OPERATOR(flatten2,
                  ops::Flatten2Op,
                  ops::Flatten2OpMaker,
H
hong 已提交
421 422
                  ops::Flatten2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Flatten2GradOpMaker<paddle::imperative::OpBase>,
423
                  ops::FlattenOpInplaceInferer);
424 425
REGISTER_OPERATOR(flatten2_grad,
                  ops::Flatten2GradOp,
426
                  ops::FlattenGradInplaceInferer);
427

428
REGISTER_OPERATOR(
429 430
    flatten_contiguous_range,
    ops::FlattenContiguousRangeOp,
431 432 433 434 435 436 437 438
    ops::FlattenContiguousRangeOpMaker,
    ops::FlattenContiguousRangeGradOpMaker<paddle::framework::OpDesc>,
    ops::FlattenContiguousRangeGradOpMaker<paddle::imperative::OpBase>,
    ops::FlattenOpInplaceInferer);
REGISTER_OPERATOR(flatten_contiguous_range_grad,
                  ops::FlattenContiguousRangeGradOp,
                  ops::FlattenGradInplaceInferer);

L
Leo Chen 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
REGISTER_OP_CPU_KERNEL(flatten,
                       ops::FlattenKernel<phi::CPUContext, float>,
                       ops::FlattenKernel<phi::CPUContext, double>,
                       ops::FlattenKernel<phi::CPUContext, uint8_t>,
                       ops::FlattenKernel<phi::CPUContext, int>,
                       ops::FlattenKernel<phi::CPUContext, int8_t>,
                       ops::FlattenKernel<phi::CPUContext, int64_t>);
REGISTER_OP_CPU_KERNEL(flatten_grad,
                       ops::FlattenGradKernel<phi::CPUContext, float>,
                       ops::FlattenGradKernel<phi::CPUContext, double>,
                       ops::FlattenGradKernel<phi::CPUContext, uint8_t>,
                       ops::FlattenGradKernel<phi::CPUContext, int>,
                       ops::FlattenGradKernel<phi::CPUContext, int8_t>,
                       ops::FlattenGradKernel<phi::CPUContext, int64_t>);
REGISTER_OP_CPU_KERNEL(flatten2,
                       ops::Flatten2Kernel<phi::CPUContext, float>,
                       ops::Flatten2Kernel<phi::CPUContext, double>,
                       ops::Flatten2Kernel<phi::CPUContext, uint8_t>,
                       ops::Flatten2Kernel<phi::CPUContext, int>,
                       ops::Flatten2Kernel<phi::CPUContext, int8_t>,
                       ops::Flatten2Kernel<phi::CPUContext, int64_t>);
REGISTER_OP_CPU_KERNEL(flatten2_grad,
                       ops::Flatten2GradKernel<phi::CPUContext, float>,
                       ops::Flatten2GradKernel<phi::CPUContext, double>,
                       ops::Flatten2GradKernel<phi::CPUContext, uint8_t>,
                       ops::Flatten2GradKernel<phi::CPUContext, int>,
                       ops::Flatten2GradKernel<phi::CPUContext, int8_t>,
                       ops::Flatten2GradKernel<phi::CPUContext, int64_t>);