grad_clip.py 9.4 KB
Newer Older
R
Roc 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
HongyuJia 已提交
15 16
import paddle

17
import paddle.distributed as dist
R
Roc 已提交
18 19
from paddle.fluid.clip import ClipGradBase, _squared_l2_norm
from paddle.fluid.dygraph import base as imperative_base
20
from paddle.fluid import core, layers
R
Roc 已提交
21 22 23 24 25


class ClipGradForMOEByGlobalNorm(ClipGradBase):
    r"""
    The Algrithm is the same as paddle.fluid.clip.ClipGradByGlobalNorm
26
    Given a list of Tensor :math:`t\_list` , calculate the global norm for the elements of all tensors in
R
Roc 已提交
27
    :math:`t\_list` , and limit it to ``clip_norm`` .
28

R
Roc 已提交
29
    - If the global norm is greater than ``clip_norm`` , all elements of :math:`t\_list` will be compressed by a ratio.
30

R
Roc 已提交
31
    - If the global norm is less than or equal to ``clip_norm`` , nothing will be done.
32

R
Roc 已提交
33 34
    The list of Tensor :math:`t\_list` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
35 36

    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
R
Roc 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    (for example: :ref:`api_paddle_optimizer_SGD`).

    The clipping formula is:

    .. math::

        t\_list[i] = t\_list[i] * \frac{clip\_norm}{\max(global\_norm, clip\_norm)}

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

    Note:
52
        ``need_clip`` of ``ClipGradyGlobalNorm`` HAS BEEN DEPRECATED since 2.0.
R
Roc 已提交
53 54
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.

R
Roc 已提交
55 56 57 58 59
    Reference:
        https://github.com/laekov/fastmoe/blob/master/examples/megatron/clip-grad-v2.2.patch
        Git commit hash: 295a615aacce7e54a37e7935274ba15e901c78e4


R
Roc 已提交
60 61 62 63 64 65 66 67
    Args:
        clip_norm (float): The maximum norm value.
        is_expert_param_func (function): a function to decide whether a param should be put into moe_params_grads
        moe_group (Group): group for moe experts communication.
        group_name (str, optional): The group name for this clip. Default value is ``default_moe_group``.

    Examples:
        .. code-block:: python
68

R
Roc 已提交
69 70 71
            import paddle

            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
72 73
            linear = paddle.nn.Linear(in_features=10, out_features=10,
                                      weight_attr=paddle.ParamAttr(need_clip=True),
R
Roc 已提交
74 75 76 77 78 79 80 81 82 83 84
                                      bias_attr=paddle.ParamAttr(need_clip=False))
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

            is_expert_func = lambda param: "expert_" in param.name
            clip = paddle.nn.ClipGradForMOEByGlobalNorm(clip_norm=1.0,is_expert_func, None)
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
    """

85 86 87 88 89 90 91
    def __init__(
        self,
        clip_norm,
        is_expert_param_func=None,
        moe_group=None,
        group_name="default_moe_group",
    ):
92
        super().__init__()
R
Roc 已提交
93 94 95 96
        self.clip_norm = float(clip_norm)
        self.group_name = group_name
        self.moe_group = moe_group
        if moe_group is not None and moe_group.nranks > 1:
97 98 99
            assert (
                is_expert_param_func is not None
            ), "When moe group size > 1, a function for selecting expert params must be specified."
R
Roc 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        self.is_expert_param_func = is_expert_param_func

    def __str__(self):
        return "Gradient Clip By GlobalNorm, global_norm=%f" % (self.clip_norm)

    @staticmethod
    def get_l2_norm_pow(params_grads, sum_dtype=None):
        sum_square_list = []
        sum_square_list_fp16 = []
        sum_square_list_fp32 = []
        for p, g in params_grads:
            if g is None:
                continue
            if getattr(p, 'need_clip', True) is False:
                continue
            merge_grad = g
            if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
            sum_square = _squared_l2_norm(merge_grad)
            if sum_square.dtype == core.VarDesc.VarType.FP16:
                sum_square_list_fp16.append(sum_square)
            elif sum_square.dtype == core.VarDesc.VarType.FP32:
                sum_square_list_fp32.append(sum_square)
            else:
                sum_square_list.append(sum_square)

        # all parameters have been filterd out
128 129 130 131 132 133
        if (
            len(sum_square_list)
            + len(sum_square_list_fp16)
            + len(sum_square_list_fp32)
            == 0
        ):
R
Roc 已提交
134
            return None, None
135 136 137 138 139
        assert sum_dtype in [
            "float64",
            "float32",
            None,
        ], "sum's type must be float64/ float32 / None"
R
Roc 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        if sum_dtype != "float64":
            sum_dtype = 'float64' if len(sum_square_list) > 0 else "float32"

        global_norm_var = []
        if len(sum_square_list_fp16) > 0:
            global_norm_var_fp16 = layers.concat(sum_square_list_fp16)
            global_norm_var_fp16 = layers.reduce_sum(global_norm_var_fp16)
            global_norm_var.append(global_norm_var_fp16.astype(sum_dtype))
        if len(sum_square_list_fp32) > 0:
            global_norm_var_fp32 = layers.concat(sum_square_list_fp32)
            global_norm_var_fp32 = layers.reduce_sum(global_norm_var_fp32)
            if sum_dtype == 'float32':
                global_norm_var.append(global_norm_var_fp32)
            else:
                global_norm_var.append(global_norm_var_fp32.astype(sum_dtype))
        if len(sum_square_list) > 0:
            global_norm_var_fp64 = layers.concat(sum_square_list)
            global_norm_var_fp64 = layers.reduce_sum(global_norm_var_fp64)
            global_norm_var.append(global_norm_var_fp64)
        global_norm_var = layers.concat(global_norm_var)
        global_norm_var = layers.reduce_sum(global_norm_var)
        return global_norm_var, sum_dtype

    @imperative_base.no_grad
    def _dygraph_clip(self, params_grads):
        normal_params_grads = []
        moe_params_grads = []

168
        # separate moe params from normal params
R
Roc 已提交
169 170 171 172 173 174 175 176 177 178 179 180
        if self.moe_group is not None and self.moe_group.nranks > 1:
            for p, g in params_grads:
                if self.is_expert_param_func(p):
                    moe_params_grads.append((p, g))
                else:
                    normal_params_grads.append((p, g))
        else:
            normal_params_grads = params_grads

        # why to return sum_dtype?
        # we will call `get_l2_norm_pow` twice and the precisions may be different.
        # For convenience and simplification, we use sum_dtype directly instead of global_norm_var_normal.dtype
181 182 183
        global_norm_var_normal, sum_dtype = self.get_l2_norm_pow(
            normal_params_grads
        )
R
Roc 已提交
184 185
        global_norm_var_moe = None
        if len(moe_params_grads) > 0:
186 187 188
            global_norm_var_moe, _ = self.get_l2_norm_pow(
                moe_params_grads, sum_dtype
            )
R
Roc 已提交
189
            if global_norm_var_moe is not None:
190
                dist.all_reduce(
191
                    global_norm_var_moe,
192
                    op=dist.ReduceOp.SUM,
193 194
                    group=self.moe_group,
                )
R
Roc 已提交
195 196 197 198 199 200 201 202 203 204 205

        if global_norm_var_normal is None and global_norm_var_moe is None:
            return params_grads
        elif global_norm_var_normal is None:
            global_norm_var = global_norm_var_moe
        elif global_norm_var_moe is None:
            global_norm_var = global_norm_var_normal
        else:
            if global_norm_var_normal.dtype != global_norm_var_moe.dtype:
                # compared with normal norm, moe norm is the later one,
                # so its precision is no lower than normal norm
206 207 208
                global_norm_var_normal = global_norm_var_normal.astype(
                    global_norm_var_moe.dtype
                )
R
Roc 已提交
209 210 211
            global_norm_var = global_norm_var_normal + global_norm_var_moe

        params_and_grads = []
212
        global_norm_var = paddle.sqrt(global_norm_var)
213 214 215 216 217
        max_global_norm = layers.fill_constant(
            shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm
        )
        clip_var = layers.elementwise_div(
            x=max_global_norm,
H
HongyuJia 已提交
218
            y=paddle.maximum(x=global_norm_var, y=max_global_norm),
219
        )
R
Roc 已提交
220 221 222 223 224 225 226
        for p, g in params_grads:
            if g is None:
                continue
            if getattr(p, 'need_clip', True) is False:
                params_and_grads.append((p, g))
                continue
            # TODO(wangxi): use inplace elementwise_mul
227 228 229 230 231
            clip_input = (
                clip_var.astype('float16')
                if g.dtype == core.VarDesc.VarType.FP16
                else clip_var
            )
R
Roc 已提交
232 233 234 235 236 237
            new_grad = layers.elementwise_mul(x=g, y=clip_input)
            params_and_grads.append((p, new_grad))
        return params_and_grads


ClipGradByGlobalNorm = ClipGradForMOEByGlobalNorm