memory_sparse_table.cc 27.2 KB
Newer Older
Z
zhaocaibei123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <omp.h>
Z
zhaocaibei123 已提交
16 17
#include <sstream>

18
#include "paddle/fluid/distributed/common/cost_timer.h"
19
#include "paddle/fluid/distributed/ps/table/memory_sparse_table.h"
Z
zhaocaibei123 已提交
20 21 22 23 24 25 26 27 28 29
#include "paddle/fluid/framework/io/fs.h"

#include "boost/lexical_cast.hpp"
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace distributed {

// TODO(zhaocaibei123): configure
30
bool FLAGS_pserver_create_value_when_push = true;
31 32
int FLAGS_pserver_table_save_max_retry = 3;
bool FLAGS_pserver_enable_create_feasign_randomly = false;
Z
zhaocaibei123 已提交
33 34

int32_t MemorySparseTable::initialize() {
35 36 37
  _shards_task_pool.resize(_task_pool_size);
  for (int i = 0; i < _shards_task_pool.size(); ++i) {
    _shards_task_pool[i].reset(new ::ThreadPool(1));
Z
zhaocaibei123 已提交
38
  }
39 40 41
  auto& profiler = CostProfiler::instance();
  profiler.register_profiler("pserver_sparse_update_all");
  profiler.register_profiler("pserver_sparse_select_all");
Z
zhaocaibei123 已提交
42 43 44 45 46 47
  initialize_value();
  VLOG(0) << "initalize MemorySparseTable succ";
  return 0;
}

int32_t MemorySparseTable::initialize_value() {
48 49 50 51 52 53 54 55 56
  _sparse_table_shard_num = static_cast<int>(_config.shard_num());
  _avg_local_shard_num =
      SparseTable::sparse_local_shard_num(_sparse_table_shard_num, _shard_num);
  _real_local_shard_num = _avg_local_shard_num;
  if (_real_local_shard_num * (_shard_idx + 1) > _sparse_table_shard_num) {
    _real_local_shard_num =
        _sparse_table_shard_num - _real_local_shard_num * _shard_idx;
    _real_local_shard_num =
        _real_local_shard_num < 0 ? 0 : _real_local_shard_num;
Z
zhaocaibei123 已提交
57
  }
58 59 60
  VLOG(1) << "memory sparse table _avg_local_shard_num: "
          << _avg_local_shard_num
          << " _real_local_shard_num: " << _real_local_shard_num;
Z
zhaocaibei123 已提交
61

62
  _local_shards.reset(new shard_type[_real_local_shard_num]);
Z
zhaocaibei123 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

  return 0;
}

int32_t MemorySparseTable::load(const std::string& path,
                                const std::string& param) {
  std::string table_path = table_dir(path);
  auto file_list = _afs_client.list(table_path);

  std::sort(file_list.begin(), file_list.end());
  for (auto file : file_list) {
    VLOG(1) << "MemorySparseTable::load() file list: " << file;
  }

  int load_param = atoi(param.c_str());
78
  auto expect_shard_num = _sparse_table_shard_num;
Z
zhaocaibei123 已提交
79 80 81 82 83 84 85 86 87 88
  if (file_list.size() != expect_shard_num) {
    LOG(WARNING) << "MemorySparseTable file_size:" << file_list.size()
                 << " not equal to expect_shard_num:" << expect_shard_num;
    return -1;
  }
  if (file_list.size() == 0) {
    LOG(WARNING) << "MemorySparseTable load file is empty, path:" << path;
    return -1;
  }

89
  size_t file_start_idx = _shard_idx * _avg_local_shard_num;
Z
zhaocaibei123 已提交
90

91 92
  size_t feature_value_size =
      _value_accesor->GetTableInfo(SIZE) / sizeof(float);
93 94 95 96 97

  int thread_num = _real_local_shard_num < 15 ? _real_local_shard_num : 15;
  omp_set_num_threads(thread_num);
#pragma omp parallel for schedule(dynamic)
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
Z
zhaocaibei123 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    FsChannelConfig channel_config;
    channel_config.path = file_list[file_start_idx + i];
    VLOG(1) << "MemorySparseTable::load begin load " << channel_config.path
            << " into local shard " << i;
    channel_config.converter = _value_accesor->converter(load_param).converter;
    channel_config.deconverter =
        _value_accesor->converter(load_param).deconverter;

    bool is_read_failed = false;
    int retry_num = 0;
    int err_no = 0;
    do {
      is_read_failed = false;
      err_no = 0;
      std::string line_data;
      auto read_channel = _afs_client.open_r(channel_config, 0, &err_no);
      char* end = NULL;
115
      auto& shard = _local_shards[i];
Z
zhaocaibei123 已提交
116 117 118 119
      try {
        while (read_channel->read_line(line_data) == 0 &&
               line_data.size() > 1) {
          uint64_t key = std::strtoul(line_data.data(), &end, 10);
120 121
          auto& value = shard[key];
          value.resize(feature_value_size);
Z
zhaocaibei123 已提交
122
          int parse_size =
123 124
              _value_accesor->parse_from_string(++end, value.data());
          value.resize(parse_size);
Z
zhaocaibei123 已提交
125 126 127 128

          // for debug
          for (int ii = 0; ii < parse_size; ++ii) {
            VLOG(2) << "MemorySparseTable::load key: " << key << " value " << ii
129
                    << ": " << value.data()[ii] << " local_shard: " << i;
Z
zhaocaibei123 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
          }
        }
        read_channel->close();
        if (err_no == -1) {
          ++retry_num;
          is_read_failed = true;
          LOG(ERROR)
              << "MemorySparseTable load failed after read, retry it! path:"
              << channel_config.path << " , retry_num=" << retry_num;
        }
      } catch (...) {
        ++retry_num;
        is_read_failed = true;
        LOG(ERROR) << "MemorySparseTable load failed, retry it! path:"
                   << channel_config.path << " , retry_num=" << retry_num;
      }
146
      if (retry_num > paddle::distributed::FLAGS_pserver_table_save_max_retry) {
Z
zhaocaibei123 已提交
147 148 149 150 151 152 153
        LOG(ERROR) << "MemorySparseTable load failed reach max limit!";
        exit(-1);
      }
    } while (is_read_failed);
  }
  LOG(INFO) << "MemorySparseTable load success, path from "
            << file_list[file_start_idx] << " to "
154
            << file_list[file_start_idx + _real_local_shard_num - 1];
Z
zhaocaibei123 已提交
155 156 157 158 159 160 161 162 163
  return 0;
}

int32_t MemorySparseTable::load_local_fs(const std::string& path,
                                         const std::string& param) {
  std::string table_path = table_dir(path);
  auto file_list = paddle::framework::localfs_list(table_path);

  int load_param = atoi(param.c_str());
164
  auto expect_shard_num = _sparse_table_shard_num;
Z
zhaocaibei123 已提交
165 166 167 168 169 170 171 172 173 174
  if (file_list.size() != expect_shard_num) {
    LOG(WARNING) << "MemorySparseTable file_size:" << file_list.size()
                 << " not equal to expect_shard_num:" << expect_shard_num;
    return -1;
  }
  if (file_list.size() == 0) {
    LOG(WARNING) << "MemorySparseTable load file is empty, path:" << path;
    return -1;
  }

175
  size_t file_start_idx = _shard_idx * _avg_local_shard_num;
Z
zhaocaibei123 已提交
176

177 178
  size_t feature_value_size =
      _value_accesor->GetTableInfo(SIZE) / sizeof(float);
Z
zhaocaibei123 已提交
179

180 181 182 183
  int thread_num = _real_local_shard_num < 15 ? _real_local_shard_num : 15;
  omp_set_num_threads(thread_num);
#pragma omp parallel for schedule(dynamic)
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
Z
zhaocaibei123 已提交
184 185 186 187 188 189 190 191 192
    bool is_read_failed = false;
    int retry_num = 0;
    int err_no = 0;
    do {
      is_read_failed = false;
      err_no = 0;
      std::string line_data;
      std::ifstream file(file_list[file_start_idx + i]);
      char* end = NULL;
193
      auto& shard = _local_shards[i];
Z
zhaocaibei123 已提交
194 195 196
      try {
        while (std::getline(file, line_data) && line_data.size() > 1) {
          uint64_t key = std::strtoul(line_data.data(), &end, 10);
197 198
          auto& value = shard[key];
          value.resize(feature_value_size);
Z
zhaocaibei123 已提交
199
          int parse_size =
200 201
              _value_accesor->parse_from_string(++end, value.data());
          value.resize(parse_size);
Z
zhaocaibei123 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        }
        file.close();
        if (err_no == -1) {
          ++retry_num;
          is_read_failed = true;
          LOG(ERROR)
              << "MemorySparseTable load failed after read, retry it! path:"
              << file_list[file_start_idx + i] << " , retry_num=" << retry_num;
        }
      } catch (...) {
        ++retry_num;
        is_read_failed = true;
        LOG(ERROR) << "MemorySparseTable load failed, retry it! path:"
                   << file_list[file_start_idx + i]
                   << " , retry_num=" << retry_num;
      }
218
      if (retry_num > paddle::distributed::FLAGS_pserver_table_save_max_retry) {
Z
zhaocaibei123 已提交
219 220 221 222 223 224 225
        LOG(ERROR) << "MemorySparseTable load failed reach max limit!";
        exit(-1);
      }
    } while (is_read_failed);
  }
  LOG(INFO) << "MemorySparseTable load success, path from "
            << file_list[file_start_idx] << " to "
226
            << file_list[file_start_idx + _real_local_shard_num - 1];
Z
zhaocaibei123 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239
  return 0;
}

int32_t MemorySparseTable::save(const std::string& dirname,
                                const std::string& param) {
  VLOG(0) << "MemorySparseTable::save dirname: " << dirname;
  int save_param =
      atoi(param.c_str());  // checkpoint:0  xbox delta:1  xbox base:2
  std::string table_path = table_dir(dirname);
  _afs_client.remove(paddle::string::format_string(
      "%s/part-%03d-*", table_path.c_str(), _shard_idx));
  std::atomic<uint32_t> feasign_size_all{0};

240
  size_t file_start_idx = _avg_local_shard_num * _shard_idx;
Z
zhaocaibei123 已提交
241

242 243 244 245
  int thread_num = _real_local_shard_num < 20 ? _real_local_shard_num : 20;
  omp_set_num_threads(thread_num);
#pragma omp parallel for schedule(dynamic)
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
Z
zhaocaibei123 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    FsChannelConfig channel_config;
    if (_config.compress_in_save() && (save_param == 0 || save_param == 3)) {
      channel_config.path = paddle::string::format_string(
          "%s/part-%03d-%05d.gz", table_path.c_str(), _shard_idx,
          file_start_idx + i);
    } else {
      channel_config.path =
          paddle::string::format_string("%s/part-%03d-%05d", table_path.c_str(),
                                        _shard_idx, file_start_idx + i);
    }
    channel_config.converter = _value_accesor->converter(save_param).converter;
    channel_config.deconverter =
        _value_accesor->converter(save_param).deconverter;
    bool is_write_failed = false;
    int feasign_size = 0;
    int retry_num = 0;
    int err_no = 0;
263
    auto& shard = _local_shards[i];
Z
zhaocaibei123 已提交
264 265 266 267 268 269
    do {
      err_no = 0;
      feasign_size = 0;
      is_write_failed = false;
      auto write_channel =
          _afs_client.open_w(channel_config, 1024 * 1024 * 40, &err_no);
270 271 272 273 274 275 276 277 278 279 280 281 282
      for (auto it = shard.begin(); it != shard.end(); ++it) {
        if (_value_accesor->save(it.value().data(), save_param)) {
          std::string format_value = _value_accesor->parse_to_string(
              it.value().data(), it.value().size());
          if (0 !=
              write_channel->write_line(paddle::string::format_string(
                  "%lu %s", it.key(), format_value.c_str()))) {
            ++retry_num;
            is_write_failed = true;
            LOG(ERROR)
                << "MemorySparseTable save prefix failed, retry it! path:"
                << channel_config.path << " , retry_num=" << retry_num;
            break;
Z
zhaocaibei123 已提交
283
          }
284
          ++feasign_size;
Z
zhaocaibei123 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297
        }
      }
      write_channel->close();
      if (err_no == -1) {
        ++retry_num;
        is_write_failed = true;
        LOG(ERROR)
            << "MemorySparseTable save prefix failed after write, retry it! "
            << "path:" << channel_config.path << " , retry_num=" << retry_num;
      }
      if (is_write_failed) {
        _afs_client.remove(channel_config.path);
      }
298
      if (retry_num > paddle::distributed::FLAGS_pserver_table_save_max_retry) {
Z
zhaocaibei123 已提交
299 300 301 302 303
        LOG(ERROR) << "MemorySparseTable save prefix failed reach max limit!";
        exit(-1);
      }
    } while (is_write_failed);
    feasign_size_all += feasign_size;
304 305
    for (auto it = shard.begin(); it != shard.end(); ++it) {
      _value_accesor->update_stat_after_save(it.value().data(), save_param);
Z
zhaocaibei123 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    }
    LOG(INFO) << "MemorySparseTable save prefix success, path: "
              << channel_config.path;
  }
  // int32 may overflow need to change return value
  return 0;
}

int32_t MemorySparseTable::save_local_fs(const std::string& dirname,
                                         const std::string& param,
                                         const std::string& prefix) {
  int save_param =
      atoi(param.c_str());  // checkpoint:0  xbox delta:1  xbox base:2
  std::string table_path = table_dir(dirname);
  int feasign_cnt = 0;
321 322 323 324 325 326 327 328
  size_t file_start_idx = _avg_local_shard_num * _shard_idx;

  int thread_num = _real_local_shard_num < 20 ? _real_local_shard_num : 20;
  std::atomic<uint32_t> feasign_size_all{0};

  omp_set_num_threads(thread_num);
#pragma omp parallel for schedule(dynamic)
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
Z
zhaocaibei123 已提交
329
    feasign_cnt = 0;
330
    auto& shard = _local_shards[i];
Z
zhaocaibei123 已提交
331 332 333 334 335
    std::string file_name = paddle::string::format_string(
        "%s/part-%s-%03d-%05d", table_path.c_str(), prefix.c_str(), _shard_idx,
        file_start_idx + i);
    std::ofstream os;
    os.open(file_name);
336 337 338 339 340 341 342 343 344
    for (auto it = shard.begin(); it != shard.end(); ++it) {
      if (_value_accesor->save(it.value().data(), save_param)) {
        std::string format_value = _value_accesor->parse_to_string(
            it.value().data(), it.value().size());
        std::string out_line = paddle::string::format_string(
            "%lu %s\n", it.key(), format_value.c_str());
        // VLOG(2) << out_line.c_str();
        os.write(out_line.c_str(), sizeof(char) * out_line.size());
        ++feasign_cnt;
Z
zhaocaibei123 已提交
345 346 347 348 349 350 351 352 353
      }
    }
    os.close();
    LOG(INFO) << "MemorySparseTable save prefix success, path:" << file_name
              << "feasign_cnt: " << feasign_cnt;
  }
  return 0;
}

354 355 356 357 358 359 360
int64_t MemorySparseTable::local_size() {
  int64_t local_size = 0;
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
    local_size += _local_shards[i].size();
  }
  return local_size;
}
Z
zhaocaibei123 已提交
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
int64_t MemorySparseTable::local_mf_size() {
  std::vector<int64_t> size_arr(_real_local_shard_num, 0);
  std::vector<std::future<int>> tasks(_real_local_shard_num);
  int64_t ret_size = 0;
  for (size_t shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
    tasks[shard_id] =
        _shards_task_pool[shard_id % _shards_task_pool.size()]->enqueue(
            [this, shard_id, &size_arr]() -> int {
              auto& local_shard = _local_shards[shard_id];
              for (auto it = local_shard.begin(); it != local_shard.end();
                   ++it) {
                if (_value_accesor->has_mf(it.value().size())) {
                  size_arr[shard_id] += 1;
                }
              }
              return 0;
            });
  }
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
    tasks[i].wait();
  }
  for (auto x : size_arr) {
    ret_size += x;
Z
zhaocaibei123 已提交
385
  }
386 387
  return ret_size;
}
Z
zhaocaibei123 已提交
388

389 390 391
std::pair<int64_t, int64_t> MemorySparseTable::print_table_stat() {
  int64_t feasign_size = local_size();
  int64_t mf_size = local_mf_size();
Z
zhaocaibei123 已提交
392 393 394
  return {feasign_size, mf_size};
}

Y
yaoxuefeng 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
int32_t MemorySparseTable::Pull(TableContext& context) {
  CHECK(context.value_type == Sparse);
  if (context.use_ptr) {
    char** pull_values = context.pull_context.ptr_values;
    const uint64_t* keys = context.pull_context.keys;
    return pull_sparse_ptr(pull_values, keys, context.num);
  } else {
    float* pull_values = context.pull_context.values;
    const PullSparseValue& pull_value = context.pull_context.pull_value;
    return pull_sparse(pull_values, pull_value);
  }
}

int32_t MemorySparseTable::Push(TableContext& context) {
  CHECK(context.value_type == Sparse);

  const uint64_t* keys = context.push_context.keys;
412
  return push_sparse(keys, context.push_context.values, context.num);
Y
yaoxuefeng 已提交
413 414
}

Z
zhaocaibei123 已提交
415 416
int32_t MemorySparseTable::pull_sparse(float* pull_values,
                                       const PullSparseValue& pull_value) {
417 418
  CostTimer timer("pserver_sparse_select_all");
  std::vector<std::future<int>> tasks(_real_local_shard_num);
Z
zhaocaibei123 已提交
419

420 421 422 423
  const size_t value_size = _value_accesor->GetTableInfo(SIZE) / sizeof(float);
  size_t mf_value_size = _value_accesor->GetTableInfo(MF_SIZE) / sizeof(float);
  size_t select_value_size =
      _value_accesor->GetTableInfo(SELECT_SIZE) / sizeof(float);
Z
zhaocaibei123 已提交
424 425 426
  // std::atomic<uint32_t> missed_keys{0};

  std::vector<std::vector<std::pair<uint64_t, int>>> task_keys(
427
      _real_local_shard_num);
Z
zhaocaibei123 已提交
428 429
  size_t num = pull_value.numel_;
  for (size_t i = 0; i < num; ++i) {
430 431
    int shard_id = (pull_value.feasigns_[i] % _sparse_table_shard_num) %
                   _avg_local_shard_num;
Z
zhaocaibei123 已提交
432 433
    task_keys[shard_id].push_back({pull_value.feasigns_[i], i});
  }
434
  for (int shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
Z
zhaocaibei123 已提交
435
    tasks[shard_id] =
436
        _shards_task_pool[shard_id % _shards_task_pool.size()]->enqueue(
Z
zhaocaibei123 已提交
437 438
            [this, shard_id, &task_keys, value_size, pull_values, mf_value_size,
             select_value_size]() -> int {
439
              auto& local_shard = _local_shards[shard_id];
Z
zhaocaibei123 已提交
440 441 442 443 444 445
              float data_buffer[value_size];  // NOLINT
              float* data_buffer_ptr = data_buffer;

              auto& keys = task_keys[shard_id];
              for (size_t i = 0; i < keys.size(); i++) {
                uint64_t key = keys[i].first;
446
                auto itr = local_shard.find(key);
Z
zhaocaibei123 已提交
447
                size_t data_size = value_size - mf_value_size;
448
                if (itr == local_shard.end()) {
Z
zhaocaibei123 已提交
449
                  // ++missed_keys;
450
                  if (FLAGS_pserver_create_value_when_push) {
Z
zhaocaibei123 已提交
451 452
                    memset(data_buffer, 0, sizeof(float) * data_size);
                  } else {
453 454 455
                    auto& feature_value = local_shard[key];
                    feature_value.resize(data_size);
                    float* data_ptr = feature_value.data();
Z
zhaocaibei123 已提交
456 457 458 459 460
                    _value_accesor->create(&data_buffer_ptr, 1);
                    memcpy(data_ptr, data_buffer_ptr,
                           data_size * sizeof(float));
                  }
                } else {
461 462
                  data_size = itr.value().size();
                  memcpy(data_buffer_ptr, itr.value().data(),
Z
zhaocaibei123 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
                         data_size * sizeof(float));
                }
                for (int mf_idx = data_size; mf_idx < value_size; ++mf_idx) {
                  data_buffer[mf_idx] = 0.0;
                }
                auto offset = keys[i].second;
                float* select_data = pull_values + select_value_size * offset;
                _value_accesor->select(&select_data,
                                       (const float**)&data_buffer_ptr, 1);
              }

              return 0;
            });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

int32_t MemorySparseTable::pull_sparse_ptr(char** pull_values,
                                           const uint64_t* keys, size_t num) {
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
  CostTimer timer("pscore_sparse_select_all");
  size_t value_size = _value_accesor->size() / sizeof(float);
  size_t mf_value_size = _value_accesor->mf_size() / sizeof(float);

  std::vector<std::future<int>> tasks(_real_local_shard_num);
  std::vector<std::vector<std::pair<uint64_t, int>>> task_keys(
      _real_local_shard_num);
  for (size_t i = 0; i < num; ++i) {
    int shard_id = (keys[i] % _sparse_table_shard_num) % _avg_local_shard_num;
    task_keys[shard_id].push_back({keys[i], i});
  }
  // std::atomic<uint32_t> missed_keys{0};
  for (size_t shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
    tasks[shard_id] =
        _shards_task_pool[shard_id % _shards_task_pool.size()]->enqueue(
            [this, shard_id, &task_keys, pull_values, value_size,
             mf_value_size]() -> int {
              auto& keys = task_keys[shard_id];
              auto& local_shard = _local_shards[shard_id];
              float data_buffer[value_size];
              float* data_buffer_ptr = data_buffer;
              for (int i = 0; i < keys.size(); ++i) {
                uint64_t key = keys[i].first;
                auto itr = local_shard.find(key);
                size_t data_size = value_size - mf_value_size;
                FixedFeatureValue* ret = NULL;
                if (itr == local_shard.end()) {
                  // ++missed_keys;
                  auto& feature_value = local_shard[key];
                  feature_value.resize(data_size);
                  float* data_ptr = feature_value.data();
                  _value_accesor->create(&data_buffer_ptr, 1);
                  memcpy(data_ptr, data_buffer_ptr, data_size * sizeof(float));
                  ret = &feature_value;
                } else {
                  ret = itr.value_ptr();
                }
                int pull_data_idx = keys[i].second;
                pull_values[pull_data_idx] = (char*)ret;
              }
              return 0;
            });
  }
  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
Z
zhaocaibei123 已提交
532 533 534 535 536
  return 0;
}

int32_t MemorySparseTable::push_sparse(const uint64_t* keys,
                                       const float* values, size_t num) {
537 538
  CostTimer timer("pserver_sparse_update_all");
  std::vector<std::future<int>> tasks(_real_local_shard_num);
Z
zhaocaibei123 已提交
539
  std::vector<std::vector<std::pair<uint64_t, int>>> task_keys(
540
      _real_local_shard_num);
Z
zhaocaibei123 已提交
541
  for (size_t i = 0; i < num; ++i) {
542
    int shard_id = (keys[i] % _sparse_table_shard_num) % _avg_local_shard_num;
Z
zhaocaibei123 已提交
543 544 545
    task_keys[shard_id].push_back({keys[i], i});
  }

546 547 548 549
  const size_t value_col = _value_accesor->GetTableInfo(SIZE) / sizeof(float);
  size_t mf_value_col = _value_accesor->GetTableInfo(MF_SIZE) / sizeof(float);
  size_t update_value_col =
      _value_accesor->GetTableInfo(UPDATE_SIZE) / sizeof(float);
Z
zhaocaibei123 已提交
550

551 552
  for (size_t shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id % _task_pool_size]->enqueue(
Z
zhaocaibei123 已提交
553 554 555
        [this, shard_id, value_col, mf_value_col, update_value_col, values,
         &task_keys]() -> int {
          auto& keys = task_keys[shard_id];
556
          auto& local_shard = _local_shards[shard_id];
Z
zhaocaibei123 已提交
557 558 559 560 561 562 563
          float data_buffer[value_col];  // NOLINT
          float* data_buffer_ptr = data_buffer;
          for (int i = 0; i < keys.size(); ++i) {
            uint64_t key = keys[i].first;
            uint64_t push_data_idx = keys[i].second;
            const float* update_data =
                values + push_data_idx * update_value_col;
564 565 566
            auto itr = local_shard.find(key);
            if (itr == local_shard.end()) {
              if (FLAGS_pserver_enable_create_feasign_randomly &&
Z
zhaocaibei123 已提交
567 568 569 570
                  !_value_accesor->create_value(1, update_data)) {
                continue;
              }
              auto value_size = value_col - mf_value_col;
571 572
              auto& feature_value = local_shard[key];
              feature_value.resize(value_size);
Z
zhaocaibei123 已提交
573
              _value_accesor->create(&data_buffer_ptr, 1);
574
              memcpy(feature_value.data(), data_buffer_ptr,
Z
zhaocaibei123 已提交
575
                     value_size * sizeof(float));
576
              itr = local_shard.find(key);
Z
zhaocaibei123 已提交
577 578
            }

579 580 581
            auto& feature_value = itr.value();
            float* value_data = feature_value.data();
            size_t value_size = feature_value.size();
Z
zhaocaibei123 已提交
582 583 584 585 586 587 588 589 590

            if (value_size == value_col) {  // 已拓展到最大size, 则就地update
              _value_accesor->update(&value_data, &update_data, 1);
            } else {
              // 拷入buffer区进行update,然后再回填,不需要的mf则回填时抛弃了
              memcpy(data_buffer_ptr, value_data, value_size * sizeof(float));
              _value_accesor->update(&data_buffer_ptr, &update_data, 1);

              if (_value_accesor->need_extend_mf(data_buffer)) {
591 592
                feature_value.resize(value_col);
                value_data = feature_value.data();
Z
zhaocaibei123 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
                _value_accesor->create(&value_data, 1);
              }
              memcpy(value_data, data_buffer_ptr, value_size * sizeof(float));
            }
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

int32_t MemorySparseTable::push_sparse(const uint64_t* keys,
                                       const float** values, size_t num) {
  _push_sparse(keys, values, num);
  return 0;
}

int32_t MemorySparseTable::_push_sparse(const uint64_t* keys,
                                        const float** values, size_t num) {
616
  std::vector<std::future<int>> tasks(_real_local_shard_num);
Z
zhaocaibei123 已提交
617
  std::vector<std::vector<std::pair<uint64_t, int>>> task_keys(
618
      _real_local_shard_num);
Z
zhaocaibei123 已提交
619
  for (size_t i = 0; i < num; ++i) {
620
    int shard_id = (keys[i] % _sparse_table_shard_num) % _avg_local_shard_num;
Z
zhaocaibei123 已提交
621 622 623
    task_keys[shard_id].push_back({keys[i], i});
  }

624 625 626 627
  size_t value_col = _value_accesor->GetTableInfo(SIZE) / sizeof(float);
  size_t mf_value_col = _value_accesor->GetTableInfo(MF_SIZE) / sizeof(float);
  size_t update_value_col =
      _value_accesor->GetTableInfo(UPDATE_SIZE) / sizeof(float);
Z
zhaocaibei123 已提交
628

629 630
  for (int shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id % _task_pool_size]->enqueue(
Z
zhaocaibei123 已提交
631 632 633
        [this, shard_id, value_col, mf_value_col, update_value_col, values,
         &task_keys]() -> int {
          auto& keys = task_keys[shard_id];
634
          auto& local_shard = _local_shards[shard_id];
Z
zhaocaibei123 已提交
635 636 637 638 639 640
          float data_buffer[value_col];  // NOLINT
          float* data_buffer_ptr = data_buffer;
          for (int i = 0; i < keys.size(); ++i) {
            uint64_t key = keys[i].first;
            uint64_t push_data_idx = keys[i].second;
            const float* update_data = values[push_data_idx];
641 642 643
            auto itr = local_shard.find(key);
            if (itr == local_shard.end()) {
              if (FLAGS_pserver_enable_create_feasign_randomly &&
Z
zhaocaibei123 已提交
644 645 646 647
                  !_value_accesor->create_value(1, update_data)) {
                continue;
              }
              auto value_size = value_col - mf_value_col;
648 649
              auto& feature_value = local_shard[key];
              feature_value.resize(value_size);
Z
zhaocaibei123 已提交
650
              _value_accesor->create(&data_buffer_ptr, 1);
651
              memcpy(feature_value.data(), data_buffer_ptr,
Z
zhaocaibei123 已提交
652
                     value_size * sizeof(float));
653
              itr = local_shard.find(key);
Z
zhaocaibei123 已提交
654
            }
655 656 657
            auto& feature_value = itr.value();
            float* value_data = feature_value.data();
            size_t value_size = feature_value.size();
Z
zhaocaibei123 已提交
658 659 660 661 662 663 664
            if (value_size == value_col) {  // 已拓展到最大size, 则就地update
              _value_accesor->update(&value_data, &update_data, 1);
            } else {
              // 拷入buffer区进行update,然后再回填,不需要的mf则回填时抛弃了
              memcpy(data_buffer_ptr, value_data, value_size * sizeof(float));
              _value_accesor->update(&data_buffer_ptr, &update_data, 1);
              if (_value_accesor->need_extend_mf(data_buffer)) {
665 666
                feature_value.resize(value_col);
                value_data = feature_value.data();
Z
zhaocaibei123 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
                _value_accesor->create(&value_data, 1);
              }
              memcpy(value_data, data_buffer_ptr, value_size * sizeof(float));
            }
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

int32_t MemorySparseTable::flush() { return 0; }

int32_t MemorySparseTable::shrink(const std::string& param) {
  VLOG(0) << "MemorySparseTable::shrink";
  // TODO(zhaocaibei123): implement with multi-thread
687
  for (int shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
Z
zhaocaibei123 已提交
688
    // shrink
689 690 691 692 693 694
    auto& shard = _local_shards[shard_id];
    for (auto it = shard.begin(); it != shard.end();) {
      if (_value_accesor->shrink(it.value().data())) {
        it = shard.erase(it);
      } else {
        ++it;
Z
zhaocaibei123 已提交
695 696 697 698 699 700 701 702 703 704
      }
    }
  }
  return 0;
}

void MemorySparseTable::clear() { VLOG(0) << "clear coming soon"; }

}  // namespace distributed
}  // namespace paddle