activation.py 57.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...tensor.ops import sigmoid  # noqa: F401
Z
zhiboniu 已提交
16 17
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18

19
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
F
Feiyu Chan 已提交
20
from ...tensor.manipulation import chunk
21

22
from ...fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
23
from ...fluid.framework import convert_np_dtype_to_dtype_
24
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode
25
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
26
import paddle
27
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
Z
zhiboniu 已提交
28
from paddle.framework import core
29
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
30

31 32
__all__ = []

33

34 35 36 37
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

38 39
    Apply the following operation to each element of the input Tensor accroding to the `Continuously Differentiable Exponential Linear Units <https://arxiv.org/abs/1704.07483>`_.

40 41
    .. math::

42
        \operatorname{celu}(x) = \max(0, x) + \min(0, \alpha * (\mathrm{e}^{x/\alpha}-1))
43 44

    Parameters:
45 46
        x (Tensor): The input Tensor with data type float16, float32, or float64.
        alpha (float, optional): The 'alpha' value of the CELU formula. Default is 1.0.
47
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
48 49

    Returns:
50
        A ``Tensor`` with the same data type and shape as ``x`` .
51 52 53 54 55 56 57 58 59 60 61 62 63 64

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")

65
    if _in_legacy_dygraph():
66
        return _legacy_C_ops.celu(x, 'alpha', alpha)
67
    if in_dygraph_mode():
68
        return _C_ops.celu(x, alpha)
69 70 71 72

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu')
    helper = LayerHelper("celu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
73 74 75 76 77 78
    helper.append_op(
        type='celu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha},
    )
79 80 81
    return out


82
def elu(x, alpha=1.0, name=None):
83
    r"""
84 85
    elu activation.

86
    .. math::
87

Z
zhupengyang 已提交
88 89 90 91 92 93 94
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
95 96 97 98

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
99
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
100

101 102
    Returns:
        A Tensor with the same data type and shape as ``x`` .
103

104 105 106
    Examples:
        .. code-block:: python

107 108
            import paddle
            import paddle.nn.functional as F
109

Z
zhupengyang 已提交
110
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
111
            out = F.elu(x, alpha=0.2)
112 113
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
114 115
    """

116
    if in_dygraph_mode():
117
        return _C_ops.elu(x, alpha)
118 119

    if _in_legacy_dygraph():
120
        return _legacy_C_ops.elu(x, 'alpha', alpha)
121 122 123 124

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
125 126 127 128 129 130
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha},
    )
131 132 133
    return out


134
@inplace_apis_in_dygraph_only
135 136 137 138 139
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
140
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
141
    if in_dygraph_mode():
142 143
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
144 145


146
def gelu(x, approximate=False, name=None):
147
    r"""
148 149
    gelu activation.

150 151
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

152
    if approximate is True
153 154 155

    .. math::

156
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
157

158
    else
159 160 161

    .. math::

162
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
163

164 165
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
166 167
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
168

169 170
    Returns:
        A Tensor with the same data type and shape as ``x`` .
171

172 173 174
    Examples:
        .. code-block:: python

175 176
            import paddle
            import paddle.nn.functional as F
177

Z
zhupengyang 已提交
178 179 180 181 182 183 184
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
185 186
    """

187
    if in_dygraph_mode():
188
        return _C_ops.gelu(x, approximate)
189 190

    if _in_legacy_dygraph():
191
        return _legacy_C_ops.gelu(x, 'approximate', approximate)
192 193 194 195

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
196 197 198 199 200 201
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate},
    )
202 203 204
    return out


205
def hardshrink(x, threshold=0.5, name=None):
206
    r"""
207 208 209 210 211
    hard shrinkage activation

    .. math::

        hardshrink(x)=
212 213 214 215 216 217 218
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
219 220 221

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
222 223
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
224 225 226 227 228 229 230

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

231 232
            import paddle
            import paddle.nn.functional as F
233

Z
zhupengyang 已提交
234
            x = paddle.to_tensor([-1, 0.3, 2.5])
235
            out = F.hardshrink(x) # [-1., 0., 2.5]
236 237

    """
H
hong 已提交
238
    if in_dygraph_mode():
239
        return _C_ops.hardshrink(x, threshold)
H
hong 已提交
240 241

    if _in_legacy_dygraph():
242
        return _legacy_C_ops.hard_shrink(x, 'threshold', threshold)
243

244 245 246
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardshrink'
    )
247 248
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
249 250 251 252 253 254
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
255 256 257
    return out


258
def hardtanh(x, min=-1.0, max=1.0, name=None):
259
    r"""
260
    hardtanh activation. Calculate the `hardtanh` of input `x`.
261 262 263

    .. math::

264 265 266 267 268 269 270 271
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
272

273
    Parameters:
274 275 276
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
277
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
278 279 280 281 282 283 284 285 286 287

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

288
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
289 290 291
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

H
hong 已提交
292
    if in_dygraph_mode():
293
        return _C_ops.hardtanh(x, min, max)
H
hong 已提交
294 295

    if _in_legacy_dygraph():
296
        return _legacy_C_ops.brelu(x, 't_min', min, 't_max', max)
297

298 299 300
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
    )
301 302 303

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
304 305 306 307 308 309
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': min, 't_max': max},
    )
310 311 312
    return out


313
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
314
    r"""
315
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
316 317 318 319 320 321
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
322 323 324 325 326 327 328
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
329 330 331

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
332 333
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
334
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
335 336 337 338 339 340 341 342 343 344 345 346 347 348

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

H
hong 已提交
349
    if in_dygraph_mode():
350
        return _C_ops.hardsigmoid(x, slope, offset)
H
hong 已提交
351 352

    if _in_legacy_dygraph():
353
        return _legacy_C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
354

355 356 357
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardsigmoid'
    )
358 359 360

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
361 362 363 364 365 366
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope, 'offset': offset},
    )
367 368 369 370
    return out


def hardswish(x, name=None):
371
    r"""
372 373 374
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
375 376 377 378

    .. math::

        hardswish(x)=
379 380 381 382 383 384 385
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
386 387 388

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
389
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
390 391 392 393 394 395 396 397 398 399 400 401 402 403

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

404
    if _in_legacy_dygraph():
405
        return _legacy_C_ops.hard_swish(x)
406
    if in_dygraph_mode():
407
        return _C_ops.hardswish(x)
408

409 410 411
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardswish'
    )
412 413 414 415 416 417 418

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


419
def leaky_relu(x, negative_slope=0.01, name=None):
420
    r"""
421
    leaky_relu activation. The calculation formula is:
422

423
    .. math::
424 425 426 427 428 429 430
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
431 432 433 434 435

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
436
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
437 438 439 440 441 442 443 444 445 446

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
447
            x = paddle.to_tensor([-2., 0., 1.])
448 449 450
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
451 452

    """
453
    if in_dygraph_mode():
454
        return _C_ops.leaky_relu(x, negative_slope)
455 456

    if _in_legacy_dygraph():
457
        return _legacy_C_ops.leaky_relu(x, 'alpha', negative_slope)
458

459 460 461
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'leaky_relu'
    )
462 463
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
464 465 466 467 468 469
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': negative_slope},
    )
470 471 472
    return out


473
def prelu(x, weight, data_format="NCHW", name=None):
474 475 476 477 478 479 480 481 482 483 484
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
485
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
486 487
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
488 489 490 491 492 493 494 495 496 497

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

498
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
499 500 501 502
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
503 504 505 506 507
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
508 509 510 511 512 513 514 515
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
516 517 518
    check_variable_and_dtype(
        weight, 'weight', ['float16', 'float32', 'float64'], 'prelu'
    )
519

520 521 522
    assert (
        len(weight.shape) == 1
    ), "The dim count of weight shape should be 1 in prelu()."
523 524 525

    mode = 'all'
    if weight.shape[0] > 1:
526 527

        true_data_format = [
528 529 530 531 532 533 534
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
535 536 537 538
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
539 540
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
541 542 543

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

544 545 546
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
547

548
        # NOTE(GuoxiaWang): support NHWC data format
549
        if data_format == 'NHWC':
550 551 552
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
553
        else:
554 555 556
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
557 558
        mode = 'channel'

559
    if in_dygraph_mode():
560
        return _C_ops.prelu(x, weight, data_format, mode)
561
    if _in_legacy_dygraph():
562 563 564
        return _legacy_C_ops.prelu(
            x, weight, 'mode', mode, 'data_format', data_format
        )
565

566
    helper = LayerHelper('prelu', **locals())
567
    out = helper.create_variable_for_type_inference(x.dtype)
568 569 570 571 572 573
    helper.append_op(
        type="prelu",
        inputs={"X": x, "Alpha": weight},
        outputs={"Out": out},
        attrs={"mode": mode, "data_format": data_format},
    )
574 575 576
    return out


577
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
620
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
639
            print(out)
640 641 642 643 644 645 646 647 648
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    if not in_dynamic_mode():
649 650 651
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64'], 'rrelu'
        )
652 653 654

    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
655 656 657 658
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
659 660 661

    if lower < 0 or lower > 1:
        raise ValueError(
662 663 664 665
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
666 667 668

    if upper < lower:
        raise ValueError(
669 670 671 672
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
673 674 675 676

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
677 678 679
                upper
            )
        )
680 681 682 683

    is_test = not training

    if _in_legacy_dygraph():
684 685 686
        out, noise = _legacy_C_ops.rrelu(
            x, 'lower', lower, 'upper', upper, 'is_test', is_test
        )
687 688 689 690 691 692
        return out

    helper = LayerHelper('rrelu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    noise = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
693 694 695 696 697 698
    helper.append_op(
        type='rrelu',
        inputs={"X": x},
        outputs={"Out": out, "Noise": noise},
        attrs=attrs,
    )
699 700 701
    return out


702
def relu(x, name=None):
703
    """
704
    relu activation.
705

706
    .. math::
707 708 709 710

        out = max(x, 0)

    Parameters:
711
        x (Tensor): The input Tensor with data type float32, float64.
712
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
713 714

    Returns:
715
        A Tensor with the same data type and shape as ``x`` .
716 717 718 719

    Examples:
        .. code-block:: python

720 721
            import paddle
            import paddle.nn.functional as F
722

723 724 725 726
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
727 728
    """

729
    if in_dygraph_mode():
W
wanghuancoder 已提交
730
        return _C_ops.relu(x)
731 732
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
733
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
734
    helper = LayerHelper('relu', **locals())
735 736 737 738 739
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


740
@inplace_apis_in_dygraph_only
741 742 743 744 745
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
746 747
    if in_dygraph_mode():
        return _C_ops.relu_(x)
748 749
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu_(x)
750 751


752
def log_sigmoid(x, name=None):
753
    r"""
754
    log_sigmoid activation.
755

756
    .. math::
757

758
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
759

760 761
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
762
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
763

764 765
    Returns:
        A Tensor with the same data type and shape as ``x`` .
766

767 768 769
    Examples:
        .. code-block:: python

770 771
            import paddle
            import paddle.nn.functional as F
772

773 774
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
775 776
    """

H
hong 已提交
777
    if in_dygraph_mode():
778
        return _C_ops.logsigmoid(x)
H
hong 已提交
779 780

    if _in_legacy_dygraph():
781
        return _legacy_C_ops.logsigmoid(x)
782

783 784 785
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
    )
786
    helper = LayerHelper("log_sigmoid", **locals())
787 788 789
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
790 791


792
def maxout(x, groups, axis=1, name=None):
793
    r"""
794 795 796 797 798 799 800 801
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

802 803 804 805 806 807 808 809 810
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

811 812 813 814 815 816 817 818 819 820 821 822

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
823
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
846
    if _in_legacy_dygraph():
847
        return _legacy_C_ops.maxout(x, 'groups', groups, 'axis', axis)
848
    if in_dygraph_mode():
849
        return _C_ops.maxout(x, groups, axis)
850 851 852 853
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
854 855
            "Attr(axis): %s." % str(axis)
        )
856 857 858 859 860
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
861 862 863 864 865 866
    helper.append_op(
        type='maxout',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'groups': groups, 'axis': axis},
    )
867 868 869
    return out


870 871 872 873 874 875
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

876
        relu6(x) = min(max(0,x), 6)
877

878
    Parameters:
879
        x (Tensor): The input Tensor with data type float32, float64.
880
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
881 882 883 884 885 886 887

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

888 889
            import paddle
            import paddle.nn.functional as F
890

891 892 893 894
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
895 896
    """
    threshold = 6.0
897
    if in_dygraph_mode():
898
        return _C_ops.relu6(x)
Z
zhiboniu 已提交
899
    if in_dynamic_mode():
900
        return _legacy_C_ops.relu6(x, 'threshold', threshold)
901 902 903 904

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
905 906 907 908 909 910
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
911 912 913
    return out


914 915 916 917 918 919
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
920
    r"""
921 922 923 924
    selu activation

    .. math::

925
        selu(x)= scale *
926 927 928 929 930 931
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
932

933
    Parameters:
934
        x (Tensor): The input Tensor with data type float32, float64.
935 936
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
937
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
938 939 940 941 942 943 944

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

945 946
            import paddle
            import paddle.nn.functional as F
947

948 949 950 951
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
952
    """
953 954
    if scale <= 1.0:
        raise ValueError(
955 956
            "The scale must be greater than 1.0. Received: {}.".format(scale)
        )
957 958 959

    if alpha < 0:
        raise ValueError(
960 961
            "The alpha must be no less than zero. Received: {}.".format(alpha)
        )
962

H
hong 已提交
963
    if in_dygraph_mode():
964
        return _C_ops.selu(x, scale, alpha)
H
hong 已提交
965
    if _in_legacy_dygraph():
966
        return _legacy_C_ops.selu(x, 'scale', scale, 'alpha', alpha)
967 968 969 970

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
971 972 973 974 975 976
    helper.append_op(
        type='selu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale': scale, 'alpha': alpha},
    )
977 978 979
    return out


M
minghaoBD 已提交
980
def silu(x, name=None):
981 982 983 984 985
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
986
        silu(x) = \frac{x}{1 + e^{-x}}
987

988 989
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
990 991
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
992
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
993

M
minghaoBD 已提交
994
    Returns:
995
        A Tensor with the same data type and shape as :attr:`x`.
996

M
minghaoBD 已提交
997 998
    Examples:
        .. code-block:: python
999 1000 1001

            import paddle
            import paddle.nn.functional as F
1002

1003 1004
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
1005 1006
    """

1007
    if in_dygraph_mode():
W
wanghuancoder 已提交
1008
        return _C_ops.silu(x)
1009 1010
    if _in_legacy_dygraph():
        return _legacy_C_ops.silu(x)
M
minghaoBD 已提交
1011 1012 1013 1014 1015 1016 1017 1018

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


1019
def softmax(x, axis=-1, dtype=None, name=None):
1020
    r"""
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1046
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1095 1096
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1097
        axis (int, optional): The axis along which to perform softmax
1098
            calculations. It should be in range [-D, D), where D is the
1099
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1100
            :math:`axis + D` . Default is -1.
1101
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1102
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1103 1104

    Returns:
1105 1106
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1107 1108 1109 1110

    Examples:
        .. code-block:: python

1111 1112
            import paddle
            import paddle.nn.functional as F
1113

1114
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1115 1116 1117 1118
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
1119
                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1130
    """
1131 1132 1133

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1134
    use_cudnn = True
1135

H
hong 已提交
1136
    if in_dygraph_mode():
1137
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1138
        return _C_ops.softmax(outs_cast, axis)
H
hong 已提交
1139 1140

    if _in_legacy_dygraph():
1141 1142 1143
        outs_cast = (
            x
            if dtype is None
1144
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1145 1146 1147 1148
        )
        return _legacy_C_ops.softmax(
            outs_cast, 'axis', axis, 'use_cudnn', use_cudnn
        )
1149 1150

    if dtype is None:
1151 1152 1153
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'softmax'
        )
1154
    else:
1155
        check_dtype(
1156 1157 1158 1159 1160 1161
            dtype,
            'dtype',
            ['float32', 'float64'],
            'softmax',
            'If dtype is not None, it only support float32 or float64.',
        )
1162 1163 1164 1165 1166

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
1167 1168 1169 1170 1171 1172
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
        )
1173 1174

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
1175 1176 1177 1178 1179 1180
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis, 'use_cudnn': use_cudnn},
    )
1181 1182

    return outs_softmax
1183 1184


1185
@inplace_apis_in_dygraph_only
1186 1187 1188 1189 1190 1191 1192 1193
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
1194 1195

    if in_dygraph_mode():
1196 1197 1198
        outs_cast = (
            x
            if dtype is None
1199
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1200
        )
1201
        return _C_ops.softmax_(outs_cast, axis)
1202 1203

    if _in_legacy_dygraph():
1204 1205 1206
        outs_cast = (
            x
            if dtype is None
1207
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1208 1209 1210 1211
        )
        return _legacy_C_ops.softmax_(
            outs_cast, 'axis', axis, 'use_cudnn', use_cudnn
        )
1212 1213


1214
def softplus(x, beta=1, threshold=20, name=None):
1215
    r"""
1216 1217 1218
    softplus activation

    .. math::
1219 1220 1221 1222
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1223

1224
    Parameters:
1225
        x (Tensor): The input Tensor with data type float32, float64.
1226 1227
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1228
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1229 1230 1231 1232 1233 1234 1235

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1236 1237
            import paddle
            import paddle.nn.functional as F
1238

1239
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
1240
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1241
    """
W
Wang Bojun 已提交
1242 1243

    if in_dygraph_mode():
1244
        return _C_ops.softplus(x, beta, threshold)
W
Wang Bojun 已提交
1245 1246

    if _in_legacy_dygraph():
1247
        return _legacy_C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
1248

1249 1250 1251
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softplus'
    )
1252 1253
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1254 1255 1256 1257 1258 1259
    helper.append_op(
        type='softplus',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'beta': beta, 'threshold': threshold},
    )
1260 1261 1262 1263
    return out


def softshrink(x, threshold=0.5, name=None):
1264
    r"""
1265 1266 1267 1268
    softshrink activation

    .. math::

1269
        softshrink(x)=
1270 1271 1272 1273 1274 1275 1276
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1277

1278
    Parameters:
1279 1280
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1281
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1282 1283 1284 1285 1286 1287 1288

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1289 1290
            import paddle
            import paddle.nn.functional as F
1291

1292 1293 1294 1295 1296
            x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
            out = F.softshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.39999998,  0.        ,  0.        ,  0.30000001])
1297
    """
1298 1299 1300
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
1301 1302 1303
                threshold
            )
        )
1304

1305
    if in_dygraph_mode():
1306
        return _C_ops.softshrink(x, threshold)
1307
    if _in_legacy_dygraph():
1308
        return _legacy_C_ops.softshrink(x, 'lambda', threshold)
1309

1310 1311 1312
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softshrink'
    )
1313 1314
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1315 1316 1317 1318 1319 1320
    helper.append_op(
        type='softshrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'lambda': threshold},
    )
1321 1322 1323 1324
    return out


def softsign(x, name=None):
1325
    r"""
1326 1327 1328 1329
    softsign activation

    .. math::

1330
        softsign(x) = \frac{x}{1 + |x|}
1331

1332
    Parameters:
1333
        x (Tensor): The input Tensor with data type float32, float64.
1334
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1335 1336 1337 1338 1339 1340 1341

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1342 1343
            import paddle
            import paddle.nn.functional as F
1344

1345 1346 1347 1348 1349
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.softsign(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
1350
    """
1351
    if in_dygraph_mode():
W
wanghuancoder 已提交
1352
        return _C_ops.softsign(x)
1353 1354
    if in_dynamic_mode():
        return _legacy_C_ops.softsign(x)
1355

1356 1357 1358
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softsign'
    )
1359 1360 1361 1362 1363 1364
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1365
def swish(x, name=None):
1366
    r"""
1367 1368 1369 1370
    swish activation.

    .. math::

1371
        swish(x) = \frac{x}{1 + e^{-x}}
1372 1373 1374

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1375
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1386 1387 1388 1389 1390
            x = paddle.to_tensor([-2., 0., 1.])
            out = F.swish(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.23840584,  0.        ,  0.73105854])
1391
    """
1392
    if in_dygraph_mode():
1393
        return _C_ops.swish(x)
1394
    if _in_legacy_dygraph():
1395
        return _legacy_C_ops.swish(x, 'beta', 1.0)
1396 1397 1398 1399

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1400 1401 1402
    helper.append_op(
        type='swish', inputs={'X': x}, outputs={'Out': out}, attrs={'beta': 1.0}
    )
1403 1404 1405
    return out


1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1418

1419 1420
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1421
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1432
            x = paddle.to_tensor([-5., 0., 5.])
1433 1434
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1435
    if in_dygraph_mode():
1436
        return _C_ops.mish(x, 20)
1437
    if _in_legacy_dygraph():
1438
        return _legacy_C_ops.mish(x)
1439 1440 1441 1442 1443 1444 1445 1446

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish')
    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
    return out


1447 1448 1449 1450 1451 1452
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1453
        tanhshrink(x) = x - tanh(x)
1454 1455 1456

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1457
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1458 1459 1460 1461 1462 1463 1464

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1465 1466
            import paddle
            import paddle.nn.functional as F
1467

1468 1469 1470 1471 1472
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.tanhshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.02005106, -0.00262468,  0.00033200,  0.00868741])
1473
    """
H
hong 已提交
1474
    if in_dygraph_mode():
1475
        return _C_ops.tanh_shrink(x)
H
hong 已提交
1476 1477

    if _in_legacy_dygraph():
1478
        return _legacy_C_ops.tanh_shrink(x)
1479

1480 1481 1482
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'tanhshrink'
    )
1483 1484 1485 1486 1487 1488
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1489
def thresholded_relu(x, threshold=1.0, name=None):
1490
    r"""
1491 1492 1493 1494
    thresholded relu activation.

    .. math::

1495
        thresholded\_relu(x) =
1496 1497 1498 1499 1500 1501 1502
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1503 1504 1505 1506

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1507
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1518 1519 1520 1521 1522
            x = paddle.to_tensor([2., 0., 1.])
            out = F.thresholded_relu(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2., 0., 0.])
1523 1524
    """

H
hong 已提交
1525
    if in_dygraph_mode():
1526
        return _C_ops.thresholded_relu(x, threshold)
H
hong 已提交
1527 1528

    if _in_legacy_dygraph():
1529
        return _legacy_C_ops.thresholded_relu(x, 'threshold', threshold)
1530

1531 1532 1533
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'thresholded_relu'
    )
1534 1535
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1536 1537 1538 1539 1540 1541
    helper.append_op(
        type='thresholded_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
1542 1543 1544
    return out


1545
def log_softmax(x, axis=-1, dtype=None, name=None):
1546
    r"""
1547 1548
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1549 1550 1551

    .. math::

1552
        \begin{aligned}
1553 1554 1555
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1556 1557

    Parameters:
1558 1559 1560 1561 1562 1563 1564
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1565
            to ``dtype`` before the operation is performed. This is useful for
1566 1567 1568
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1569
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1570

1571
    Returns:
1572 1573
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1574 1575 1576 1577

    Examples:
        .. code-block:: python

1578 1579 1580
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1581 1582 1583 1584 1585 1586
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1599 1600 1601

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1602

H
hong 已提交
1603
    if in_dygraph_mode():
1604
        if dtype is not None:
1605 1606
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1607

H
hong 已提交
1608 1609
    if _in_legacy_dygraph():
        if dtype is not None:
1610 1611
            x = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.log_softmax(x, 'axis', axis)
H
hong 已提交
1612

1613
    if dtype is None:
1614 1615 1616
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_softmax'
        )
1617
    else:
1618
        check_dtype(
1619 1620 1621 1622 1623 1624
            dtype,
            'dtype',
            ['float32', 'float64'],
            'log_softmax',
            'If dtype is not None, it only support float32 or float64.',
        )
1625

1626
    helper = LayerHelper("log_softmax", **locals())
1627
    out_cast = x
1628
    if dtype is not None:
1629
        out_cast = helper.create_variable_for_type_inference(dtype)
1630 1631 1632 1633 1634 1635
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
        )
1636

1637
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1638 1639 1640 1641 1642 1643
    helper.append_op(
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis},
    )
1644

1645
    return out
F
Feiyu Chan 已提交
1646 1647 1648 1649


def glu(x, axis=-1, name=None):
    r"""
1650
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1661 1662 1663
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1664
            Default is -1.
1665
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1666

F
Feiyu Chan 已提交
1667
    Returns:
1668
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1669
        halved.
1670

F
Feiyu Chan 已提交
1671 1672
    Examples:
        .. code-block:: python
1673

F
Feiyu Chan 已提交
1674 1675
            import paddle
            from paddle.nn import functional as F
1676

F
Feiyu Chan 已提交
1677 1678 1679 1680 1681 1682 1683
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
1684

F
Feiyu Chan 已提交
1685
    """
1686 1687 1688
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
F
Feiyu Chan 已提交
1689 1690 1691 1692
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1718 1719
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1720 1721 1722
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1723 1724
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1725
            in autograd. Default is False.
1726
        axis (int, optional): The axis along will be calculated softmax value.
1727
            Default is -1.
1728
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1729

1730
    Returns:
1731 1732
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1733
        probability distributions that sum to 1 across ``axis``.
1734

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
1750

1751
    """
H
hong 已提交
1752
    if in_dygraph_mode():
1753
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
H
hong 已提交
1754

Z
zhiboniu 已提交
1755
    if in_dynamic_mode():
1756 1757 1758
        return _legacy_C_ops.gumbel_softmax(
            x, 'temperature', temperature, 'hard', hard, 'axis', axis
        )
1759 1760 1761 1762

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
1763 1764 1765 1766 1767 1768
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1769
    return out