dequantize_op.cc 4.2 KB
Newer Older
X
xiaolil1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
19
#include "paddle/fluid/operators/dequantize_op.h"
X
xiaolil1 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32
#include "paddle/fluid/framework/data_layout_transform.h"

namespace paddle {
namespace operators {

using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
33
//using MKLDNNDataType = mkldnn::memory::data_type;
X
xiaolil1 已提交
34 35

template <typename DeviceContext, typename T>
36
class DeQuantOpKernel : public framework::OpKernel<T> {
X
xiaolil1 已提交
37
 public:
38

X
xiaolil1 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* output = ctx.Output<Tensor>("Output");

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();
 
    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    //T scale_data = *(scale->data<T>());
    std::vector<T> scale_data = {*(scale->data<T>())};

53 54 55 56 57 58
    std::vector<primitive> pipeline;
    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
    mkldnn::memory::data_type src_dt = paddle::framework::ToMKLDNNDataType(input->type());
    mkldnn::memory::format src_fmt = memory::format::nhwc;//input->format();    

X
xiaolil1 已提交
59 60 61 62 63
    mkldnn::primitive_attr attri;
    int mask = 0;
    attri.set_output_scales(mask, scale_data);

    auto src_md = platform::MKLDNNMemDesc(
64
            {src_tz}, src_dt, src_fmt); 
X
xiaolil1 已提交
65 66 67 68 69
    auto src_pd = mkldnn::memory::primitive_desc{src_md, engine};
    auto src_memory = std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
    std::shared_ptr<primitive::at> src_memory_p = std::shared_ptr<primitive::at>(new primitive::at(*src_memory));

    auto dst_md = platform::MKLDNNMemDesc(
70
            {dst_tz}, memory::data_type::f32, memory::format::nchw);
X
xiaolil1 已提交
71 72 73 74 75 76 77 78 79 80 81
    auto dst_pd = mkldnn::memory::primitive_desc{dst_md, engine};
    auto dst_memory = mkldnn::memory(dst_pd, to_void_cast<T>(output_data));
    
    auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
        new reorder::primitive_desc(dst_pd, src_pd, attri));    
    auto reorder_p= std::shared_ptr<reorder>(new reorder(*reorder_pd, *src_memory_p, dst_memory));
    pipeline.push_back(*reorder_p);

  }
};

82
framework::OpKernelType DeQuantOp::GetExpectedKernelType(const framework::ExecutionContext& ctx) const {
X
xiaolil1 已提交
83 84 85 86 87 88 89 90
  framework::LibraryType library_{framework::LibraryType::kPlain};
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
  }
X
xiaolil1 已提交
91
  return framework::OpKernelType(
X
xiaolil1 已提交
92
      framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),ctx.GetPlace(),layout_, library_);
X
xiaolil1 已提交
93 94
}

95
void DeQuantOpMaker::Make() {
X
xiaolil1 已提交
96 97 98
  AddInput("Input","input");
  AddInput("Scale","scale...");
  AddOutput("Output","output");
X
xiaolil1 已提交
99
AddComment(R"DOC(
100
This op will quantize data from INT8 to FP32
X
xiaolil1 已提交
101
)DOC");
X
xiaolil1 已提交
102 103 104 105 106 107 108
}

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

109
REGISTER_OPERATOR(dequantize, ops::DeQuantOp, ops::DeQuantOpMaker, paddle::framework::DefaultGradOpDescMaker<true>);
X
xiaolil1 已提交
110

111
REGISTER_OP_CPU_KERNEL(dequantize, ops::DeQuantOpKernel<paddle::platform::CPUDeviceContext, float>);
X
xiaolil1 已提交
112

113