the_one_ps.py 60.1 KB
Newer Older
Z
ziyoujiyi 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Z
ziyoujiyi 已提交
2
#
Z
ziyoujiyi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Z
ziyoujiyi 已提交
6
#
Z
ziyoujiyi 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
Z
ziyoujiyi 已提交
8
#
Z
ziyoujiyi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
ziyoujiyi 已提交
14 15 16 17 18

import warnings

import os
import paddle.fluid as fluid
Z
ziyoujiyi 已提交
19
from paddle.distributed import fleet
Z
ziyoujiyi 已提交
20
from paddle.fluid import core
Z
ziyoujiyi 已提交
21
from paddle.distributed.ps.utils.public import *
Z
ziyoujiyi 已提交
22 23 24 25 26
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.framework import Variable, Parameter
W
wangguanqun 已提交
27 28
from paddle.distributed.fleet.runtime.runtime_base import RuntimeBase
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready
Z
ziyoujiyi 已提交
29
from paddle.distributed.fleet.proto import the_one_ps_pb2
Z
ziyoujiyi 已提交
30 31
from paddle.fluid.communicator import Communicator, HeterClient
from google.protobuf import text_format
32
from paddle.distributed.ps.coordinator import Coordinator
Z
ziyoujiyi 已提交
33

Z
ziyoujiyi 已提交
34 35 36 37
__all__ = [
    'Table', 'SparseTable', 'GeoSparseTable', 'BarrierTable', 'TensorTable',
    'DenseTable'
]
Z
ziyoujiyi 已提交
38 39


W
wangguanqun 已提交
40 41 42 43
def get_program_by_id(context, program_id):
    programs = context["origin_main_programs"]
    for i, program in enumerate(programs):
        if id(program) == program_id:
44 45
            return program, context["origin_startup_programs"][i], i
    return None, None, None
W
wangguanqun 已提交
46 47 48


def parse_table_class(varname, program_id, context):
49
    main_program, startup_program, idx = get_program_by_id(context, program_id)
W
wangguanqun 已提交
50
    for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
51 52 53 54 55 56 57 58 59 60 61 62
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

        if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2":
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
                return "MemorySparseTable"


Z
ziyoujiyi 已提交
63
def check_embedding_dim(accessor_proto, varname, program_id, context):
64
    main_program, startup_program, idx = get_program_by_id(context, program_id)
Z
ziyoujiyi 已提交
65
    embedding_dim = 0
W
wangguanqun 已提交
66
    for var in main_program.list_vars():
Z
ziyoujiyi 已提交
67 68
        if var.name == varname:
            embedding_dim = var.shape[1]
Z
ziyoujiyi 已提交
69 70
            print('new var: {}, {}, {}'.format(var, embedding_dim,
                                               accessor_proto.fea_dim))
Z
ziyoujiyi 已提交
71
            break
72

Z
ziyoujiyi 已提交
73
    fea_dim = accessor_proto.fea_dim
74 75 76
    if accessor_proto.accessor_class == "SparseAccessor":
        if fea_dim != embedding_dim + 2:
            raise ValueError(
77 78
                "The fea_dim is wrong, it will be sparse_embedding_dim + 2: {}, but got {}"
                .format(embedding_dim + 2, fea_dim))
79 80 81
    else:
        if fea_dim != embedding_dim:
            raise ValueError(
82 83
                "The fea_dim is wrong, it will be sparse_embedding_dim: {}, but got {}"
                .format(embedding_dim, fea_dim))
84

Z
ziyoujiyi 已提交
85
    embedx_dim = accessor_proto.embedx_dim
86 87 88
    if accessor_proto.accessor_class == "SparseAccessor":
        if embedx_dim != embedding_dim - 1:
            raise ValueError(
89 90
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 1: {}, but got {}"
                .format(embedding_dim - 1, embedx_dim))
91 92 93
    else:
        if embedx_dim != embedding_dim - 3:
            raise ValueError(
94 95
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 3: {}, but got {}"
                .format(embedding_dim - 3, embedx_dim))
Z
ziyoujiyi 已提交
96 97


Z
ziyoujiyi 已提交
98
class Service:
99

Z
ziyoujiyi 已提交
100 101 102 103 104 105 106 107 108 109 110 111
    def __init__(self):
        pass

    def _set(self, service_proto):
        service_proto.server_class = "BrpcPsServer"
        service_proto.client_class = "BrpcPsClient"
        service_proto.service_class = "BrpcPsService"
        service_proto.start_server_port = 0
        service_proto.server_thread_num = 12


class GpuService(Service):
112

Z
ziyoujiyi 已提交
113
    def __init__(self):
114
        super(GpuService, self).__init__()
Z
ziyoujiyi 已提交
115 116 117 118 119 120

    def _set(self, service_proto):
        service_proto.server_class = 'PsLocalServer'
        service_proto.client_class = 'PsLocalClient'


Z
ziyoujiyi 已提交
121
class Accessor:
122

Z
ziyoujiyi 已提交
123 124 125
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
Z
ziyoujiyi 已提交
126 127
        self.feature_dim = 0
        self.embedding_dim = 0
Z
ziyoujiyi 已提交
128

Z
ziyoujiyi 已提交
129 130
    # TableAccessorParameter accessor
    def _set(self, accessor_proto, varname, program_id, context):
131 132
        main_program, startup_program, idx = get_program_by_id(
            context, program_id)
Z
ziyoujiyi 已提交
133 134 135 136 137
        embedding_dim = 0
        for var in main_program.list_vars():
            if var.name == varname:
                embedding_dim = var.shape[1]
                break
Z
ziyoujiyi 已提交
138

Z
ziyoujiyi 已提交
139
        if not accessor_proto.HasField("accessor_class"):
140
            # DownpourSparseValueAccessor
141
            if context['use_ps_gpu']:
142
                accessor_proto.accessor_class = "CtrDymfAccessor"
143 144
            else:
                accessor_proto.accessor_class = "SparseAccessor"
Z
ziyoujiyi 已提交
145
        if not accessor_proto.HasField("fea_dim"):
146 147 148 149
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.fea_dim = embedding_dim + 2
            else:
                accessor_proto.fea_dim = embedding_dim
Z
ziyoujiyi 已提交
150
        if not accessor_proto.HasField("embedx_dim"):
151 152 153 154
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.embedx_dim = embedding_dim - 1
            else:
                accessor_proto.embedx_dim = embedding_dim - 3
Z
ziyoujiyi 已提交
155 156 157
        if not accessor_proto.HasField("embedx_threshold"):
            accessor_proto.embedx_threshold = 0

D
danleifeng 已提交
158 159 160 161 162 163
        graph_sgd_param = accessor_proto.graph_sgd_param
        if not graph_sgd_param.HasField("nodeid_slot"):
            graph_sgd_param.nodeid_slot = 9008
        if not graph_sgd_param.HasField("feature_learning_rate"):
            graph_sgd_param.feature_learning_rate = 0.05

Z
ziyoujiyi 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        ctr_accessor_param = accessor_proto.ctr_accessor_param
        if not ctr_accessor_param.HasField("nonclk_coeff"):
            ctr_accessor_param.nonclk_coeff = 0.1
        if not ctr_accessor_param.HasField("click_coeff"):
            ctr_accessor_param.click_coeff = 1.0
        if not ctr_accessor_param.HasField("base_threshold"):
            ctr_accessor_param.base_threshold = 0
        if not ctr_accessor_param.HasField("delta_threshold"):
            ctr_accessor_param.delta_threshold = 0
        if not ctr_accessor_param.HasField("delta_keep_days"):
            ctr_accessor_param.delta_keep_days = 16
        if not ctr_accessor_param.HasField("show_click_decay_rate"):
            ctr_accessor_param.show_click_decay_rate = 1
        if not ctr_accessor_param.HasField("delete_threshold"):
            ctr_accessor_param.delete_threshold = 0
        if not ctr_accessor_param.HasField("delete_after_unseen_days"):
            ctr_accessor_param.delete_after_unseen_days = 30
        if not ctr_accessor_param.HasField("ssd_unseenday_threshold"):
            ctr_accessor_param.ssd_unseenday_threshold = 1

        for sgd_param in [
                accessor_proto.embed_sgd_param, accessor_proto.embedx_sgd_param
        ]:
            if not sgd_param.HasField("name"):
                sgd_param.name = "SparseAdaGradSGDRule"
            if sgd_param.name == "SparseAdaGradSGDRule" or sgd_param.name == "StdAdaGradSGDRule":
                if not sgd_param.adagrad.HasField("learning_rate"):
                    sgd_param.adagrad.learning_rate = 0.05
                if not sgd_param.adagrad.HasField("initial_g2sum"):
                    sgd_param.adagrad.initial_g2sum = 3.0
                if not sgd_param.adagrad.HasField("initial_range"):
                    sgd_param.adagrad.initial_range = 0.0001
                if len(sgd_param.adagrad.weight_bounds) == 0:
                    sgd_param.adagrad.weight_bounds.extend([-10.0, 10.0])
            if sgd_param.name == "SparseNaiveSGDRule":
                if not sgd_param.naive.HasField("learning_rate"):
                    sgd_param.naive.learning_rate = 0.05
                if not sgd_param.naive.HasField("initial_range"):
                    sgd_param.naive.initial_range = 0.0001
                if len(sgd_param.naive.weight_bounds) == 0:
                    sgd_param.naive.weight_bounds.extend([-10.0, 10.0])
D
danleifeng 已提交
205
            if sgd_param.name == "SparseAdamSGDRule" or sgd_param.name == "SparseSharedAdamSGDRule":
Z
ziyoujiyi 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
                if not sgd_param.adam.HasField("learning_rate"):
                    sgd_param.adam.learning_rate = 0.001
                if not sgd_param.adam.HasField("initial_range"):
                    sgd_param.adam.initial_range = 0.0001
                if not sgd_param.adam.HasField("beta1_decay_rate"):
                    sgd_param.adam.beta1_decay_rate = 0.9
                if not sgd_param.adam.HasField("beta2_decay_rate"):
                    sgd_param.adam.beta2_decay_rate = 0.999
                if not sgd_param.adam.HasField("ada_epsilon"):
                    sgd_param.adam.ada_epsilon = 1e-08
                if len(sgd_param.adam.weight_bounds) == 0:
                    sgd_param.adam.weight_bounds.extend([-10.0, 10.0])


class CommonAccessor(Accessor):
221

Z
ziyoujiyi 已提交
222
    def __init__(self):
Z
ziyoujiyi 已提交
223 224 225
        super(CommonAccessor, self).__init__()
        self.table_name = ''
        self.entry = 'none'
Z
ziyoujiyi 已提交
226 227 228 229
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
Z
ziyoujiyi 已提交
230
        self.sync = False
Z
ziyoujiyi 已提交
231 232 233 234 235 236 237 238 239 240 241 242
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
243 244 245 246 247
        opt_input_map["adam_d2sum"] = [("Param", None), ("D2Sum", None),
                                       ("G2Sum", None), ("Moment", None),
                                       ("MomentDecayRate", 1),
                                       ("AdaDecayRate", 1), ("AdaEpsilon", 1),
                                       ("LearningRate", 1)]
Z
ziyoujiyi 已提交
248 249 250
        opt_input_map["sum"] = [("Param", None)]
        opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1),
                                          ("LearningRate", 1)]
W
wangguanqun 已提交
251
        opt_input_map["summary"] = [("Param", None), ("SummaryDecayRate", 1)]
Z
ziyoujiyi 已提交
252 253 254 255 256 257 258 259 260

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
        opt_attr_map["naive_adagrad"] = []
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]
        opt_attr_map["adam_d2sum"] = [("beta1", "f"), ("beta2", "f"),
                                      ("epsilon", "f")]
W
wangguanqun 已提交
261
        opt_attr_map["summary"] = []
Z
ziyoujiyi 已提交
262 263 264 265 266 267 268 269 270 271 272

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

W
wangguanqun 已提交
273
    def parse_entry(self, varname, program_id, context):
274 275
        main_program, startup_program, idx = get_program_by_id(
            context, program_id)
W
wangguanqun 已提交
276
        for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

    def get_shard(self, total_dim, shard_num, pserver_id):
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
306
        # print("get_initializer_attr param name:", value_name)
Z
ziyoujiyi 已提交
307 308 309 310
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
311
                # print("get_initializer_attr op type:", op.type)
Z
ziyoujiyi 已提交
312
                for attr in self.opt_init_map[op.type]:
313
                    # print("get_initializer_attr opt_init_map attr:", attr)
Z
ziyoujiyi 已提交
314
                    init_attr.append(str(op.attr(attr)))
315
                    # print("get_initializer_attr op attr:", str(op.attr(attr)))
Z
ziyoujiyi 已提交
316 317 318 319
                attr_str = l_in.join(init_attr)
                break
        return attr_str

W
wangguanqun 已提交
320 321 322 323 324 325
    def parse_by_optimizer(self, ctx, context):
        grad_name = ctx.origin_varnames()[0]
        is_sparse = ctx.is_sparse()
        size = ctx.sections()[0]
        single_dim = ctx.sections()[1] if ctx.is_sparse() else 1
        adam_d2sum = context["user_defined_strategy"].adam_d2sum
326 327
        # print("parse_by_optimizer table_id:{} is_datanorm:{}".format(
        #     ctx.table_id(), ctx.is_datanorm_table()))
W
wangguanqun 已提交
328

329 330
        main_program, startup_program, idx = get_program_by_id(
            context, ctx.program_id())
Z
ziyoujiyi 已提交
331 332 333
        pserver_id = get_role_id(context['role_maker'])
        pserver_num = len(get_ps_endpoints(context['role_maker']))
        optimizer_ops = get_optimize_ops(main_program)
334 335
        # print("the one ps optimizer_ops:", optimizer_ops)
        # print("the one ps parse_by_optimizer grad_name:", grad_name)
Z
ziyoujiyi 已提交
336 337 338 339
        oop = None

        for op in optimizer_ops:
            if ("Param" in op.input_names) and (
340 341
                    op.input("Param")[0]
                    == context['grad_name_to_param_name'][grad_name]):
Z
ziyoujiyi 已提交
342 343 344 345 346 347 348 349 350 351 352 353
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = get_trainers(context['role_maker'])
W
wangguanqun 已提交
354 355
        self.table_num = size
        self.table_dim = single_dim
Z
ziyoujiyi 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368

        if oop.type != 'adam' and adam_d2sum == True:
            print('optimization algorithm is not adam, set adam_d2sum False')
            adam_d2sum = False
        print("adam_d2sum:", adam_d2sum)
        if context['ps_mode'] == DistributedMode.GEO:
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
        elif context['use_ps_gpu'] and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
W
wangguanqun 已提交
369 370 371 372 373
        elif ctx.is_datanorm_table():
            param_varnames = self.opt_input_map["summary"]
            attr_varnames = self.opt_attr_map["summary"]
            self.accessor_class = "summary"
        elif adam_d2sum and not is_sparse:
Z
ziyoujiyi 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387
            param_varnames = self.opt_input_map["adam_d2sum"]
            attr_varnames = self.opt_attr_map["adam_d2sum"]
            self.accessor_class = "adam_d2sum"
        else:
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
            if self.accessor_class == "adam_d2sum":
                #for dims
                if shape is None:
                    if is_sparse:
W
wangguanqun 已提交
388
                        shape = single_dim
Z
ziyoujiyi 已提交
389
                    else:
W
wangguanqun 已提交
390
                        shape = self.get_shard(size, pserver_num, pserver_id)
Z
ziyoujiyi 已提交
391 392 393 394 395 396 397
                dims.append(shape)

                #for initializers
                if formal_name == "Param" or formal_name == "LearningRate":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    #TODO: for dense learning_rate, can be different from sparse lr
398 399
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
400 401
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
402
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
403

404 405
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
Z
ziyoujiyi 已提交
406 407 408 409 410 411 412 413 414
                elif formal_name == "MomentDecayRate":
                    initializer = "fill_constant&0.99"
                elif formal_name == "AdaDecayRate":
                    initializer = "fill_constant&0.9999"
                elif formal_name == "AdaEpsilon":
                    initializer = "fill_constant&1.0e-8"
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
W
wangguanqun 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428
            elif self.accessor_class == "summary":
                #for dims
                if shape is None:
                    if is_sparse:
                        shape = single_dim
                    else:
                        shape = self.get_shard(size, pserver_num, pserver_id)
                dims.append(shape)

                #for initializers
                if formal_name == "Param":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]

429 430
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
W
wangguanqun 已提交
431
                elif formal_name == "SummaryDecayRate":
432
                    initializer = "fill_constant&0.999999"
W
wangguanqun 已提交
433 434 435
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
Z
ziyoujiyi 已提交
436 437 438 439 440 441 442 443
            else:
                if formal_name == "G2Sum":
                    dims.append(1)
                    initializer = "fill_constant&0"
                    initializers.append(initializer)
                else:
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
444 445
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
446 447
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
448
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
449 450 451

                    if shape is None:
                        if is_sparse:
W
wangguanqun 已提交
452
                            shape = single_dim
Z
ziyoujiyi 已提交
453
                        else:
W
wangguanqun 已提交
454
                            shape = self.get_shard(size, pserver_num,
Z
ziyoujiyi 已提交
455 456 457
                                                   pserver_id)
                    dims.append(shape)

458 459
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
Z
ziyoujiyi 已提交
460 461 462 463 464 465 466 467 468 469 470
                    initializers.append(initializer)

        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
            attrs.append("&".join([attr_varname, type_, str(value)]))

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

Z
ziyoujiyi 已提交
471 472 473 474 475 476 477 478 479 480 481 482
    # CommonAccessorParameter common
    def _set(self, proto):
        proto.name = self.accessor_class
        proto.table_name = self.table_name
        proto.params.extend(self.params)
        proto.dims.extend(self.dims)
        proto.initializers.extend(self.initializers)
        proto.entry = self.entry
        proto.trainer_num = self.trainer_num
        proto.sync = self.sync
        proto.table_num = self.table_num
        proto.table_dim = self.table_dim
Z
ziyoujiyi 已提交
483 484 485


class Tensor:
486

Z
ziyoujiyi 已提交
487 488 489 490
    def __init__(self, tesnor_dcit):
        self.tensor_dict = tesnor_dcit

    def _set(self, tensor_proto):
491 492
        tensor_proto.main_program_id = self.tensor_dict.get(
            "main_program_id", 0)
Z
ziyoujiyi 已提交
493 494 495 496 497 498
        tensor_proto.startup_program_id = self.tensor_dict.get(
            "startup_program_id", 0)
        tensor_proto.feed_var_name = self.tensor_dict.get("feed_var_name", '')
        tensor_proto.fetch_var_name = self.tensor_dict.get("fetch_var_name", '')
        tensor_proto.tensor_table_class = self.tensor_dict.get(
            "tensor_table_class", '')
Z
ziyoujiyi 已提交
499 500 501


class Table:
502

Z
ziyoujiyi 已提交
503 504 505 506
    def __init__(self):
        self.table_class = None
        self.shard_num = -1
        self.type = None
Z
ziyoujiyi 已提交
507 508 509
        self.accessor = Accessor()
        self.shard_num = 256
        self.common = CommonAccessor()
Z
ziyoujiyi 已提交
510 511
        self.tensor = None

Z
ziyoujiyi 已提交
512 513
    def _set(self, table_proto):
        pass
Z
ziyoujiyi 已提交
514 515


Z
ziyoujiyi 已提交
516
class BarrierTable(Table):
517

Z
ziyoujiyi 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    def __init__(self, context, idx):
        super(BarrierTable, self).__init__()
        self.type = None
        self.shard_num = 256
        self.accessor.accessor_class = 'CommMergeAccessor'
        self.common.attrs = ""
        self.common.dims = []
        self.common.params = []
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.role_maker = context['role_maker']
        self.idx = idx
        self.is_sync = context['is_sync']

    def _set(self, table_proto):
        table_proto.table_id = self.idx
        table_proto.table_class = 'BarrierTable'
        table_proto.shard_num = 256
Z
ziyoujiyi 已提交
535
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549

        table_proto.accessor.accessor_class = "CommMergeAccessor"
        table_proto.accessor.fea_dim = 0
        table_proto.accessor.embedx_dim = 0

        table_proto.common.name = ""
        table_proto.common.table_name = "barrier_table"
        table_proto.common.sync = self.is_sync
        table_proto.common.entry = 'none'

        trainer_num = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainer_num += len(self.role_maker._get_heter_worker_endpoints())
        table_proto.common.trainer_num = trainer_num
Z
ziyoujiyi 已提交
550 551


Z
ziyoujiyi 已提交
552
class TensorTable(Table):
553

Z
ziyoujiyi 已提交
554 555 556 557 558
    def __init__(self, idx, tensor_dict, role_maker):
        super(TensorTable, self).__init__()
        self.idx = idx
        self.tensor_dict = tensor_dict
        self.role_maker = role_maker
Z
ziyoujiyi 已提交
559

Z
ziyoujiyi 已提交
560 561
    def _set(self, table_proto):
        table_proto.table_id = self.idx
Z
ziyoujiyi 已提交
562
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
563
        table_proto.table_class = self.tensor_dict.get("tensor_table_class", '')
Z
ziyoujiyi 已提交
564

Z
ziyoujiyi 已提交
565
        table_proto.accessor.accessor_class = "CommMergeAccessor"
Z
ziyoujiyi 已提交
566

567 568
        table_proto.common.table_name = self.tensor_dict.get(
            "feed_var_name", '')
Z
ziyoujiyi 已提交
569
        table_proto.common.trainer_num = get_trainers(self.role_maker)
Z
ziyoujiyi 已提交
570

Z
ziyoujiyi 已提交
571 572
        tensor = Tensor(self.tensor_dict)
        tensor._set(table_proto.tensor)
Z
ziyoujiyi 已提交
573 574


Z
ziyoujiyi 已提交
575
class SparseTable(Table):
576

Z
ziyoujiyi 已提交
577 578 579 580 581 582 583
    def __init__(self, context, send_ctx):
        super(SparseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.type = None
        self.table_class = 'MemorySparseTable'
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
584

Z
ziyoujiyi 已提交
585 586
    def _set(self, table_proto):
        ctx = self.ctx
587 588
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == False):
Z
ziyoujiyi 已提交
589 590 591
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
592
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
593
        table_proto.shard_num = self.shard_num
594 595 596 597
        if table_proto.sparse_table_cache_file_num > len(
                get_ps_endpoints(self.context['role_maker'])):
            table_proto.sparse_table_cache_file_num = len(
                get_ps_endpoints(self.context['role_maker']))
Z
ziyoujiyi 已提交
598 599 600 601 602 603 604 605 606 607 608 609

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]

        print('new table_name: {}'.format(self.common.table_name))
        all_table_proto = self.context[
            "user_defined_strategy"].sparse_table_configs
        usr_table_proto = all_table_proto.add()
        for proto in all_table_proto:
            if proto.table_name == self.common.table_name:
                usr_table_proto = proto
                break
610 611 612 613 614
        if usr_table_proto.HasField("table_class"):
            table_proto.table_class = usr_table_proto.table_class
        else:
            table_proto.table_class = 'MemorySparseTable'
            warnings.warn("The PS mode must use MemorySparseTable.")
Z
ziyoujiyi 已提交
615 616 617
        if usr_table_proto.HasField("shard_num"):
            table_proto.shard_num = usr_table_proto.shard_num
        else:
618 619 620 621 622 623 624 625 626 627
            if self.context['use_ps_gpu']:
                table_proto.shard_num = 37
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 37 in gpups."
                )
            else:
                table_proto.shard_num = 1000
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 1000 in cpups."
                )
Z
ziyoujiyi 已提交
628

Z
ziyoujiyi 已提交
629 630 631
        if usr_table_proto.accessor.ByteSize() == 0:
            warnings.warn(
                "The accessor of sparse table is not set, use default value.")
Z
ziyoujiyi 已提交
632

Z
ziyoujiyi 已提交
633 634 635 636
        table_proto.accessor.ParseFromString(
            usr_table_proto.accessor.SerializeToString())
        self.accessor._set(table_proto.accessor, self.common.table_name,
                           ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
637

Z
ziyoujiyi 已提交
638 639
        check_embedding_dim(table_proto.accessor, self.common.table_name,
                            ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
640

Z
ziyoujiyi 已提交
641
        self.common.parse_by_optimizer(ctx, self.context)
642 643
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
644
        self.common.sync = True if self.context['is_sync'] else False
Z
ziyoujiyi 已提交
645

Z
ziyoujiyi 已提交
646
        self.common._set(table_proto.common)
Z
ziyoujiyi 已提交
647 648


Z
ziyoujiyi 已提交
649
class GeoSparseTable(SparseTable):
650

Z
ziyoujiyi 已提交
651 652
    def __init__(self, context, send_ctx):
        super(GeoSparseTable, self).__init__(context, send_ctx)
653
        self.table_class = "MemorySparseGeoTable"
Z
ziyoujiyi 已提交
654 655 656 657 658
        if self.context['ps_mode'] != DistributedMode.GEO:
            raise ValueError("not geo sparse table!")

    def _set(self, table_proto):
        ctx = self.ctx
659 660
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == False):
Z
ziyoujiyi 已提交
661 662 663
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
664
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
665 666 667 668 669 670 671 672 673
        table_proto.shard_num = self.shard_num

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = ctx.sections()[1]

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]
        self.common.parse_by_optimizer(ctx, self.context)
674 675
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
676 677 678 679 680
        self.common.sync = False
        self.common._set(table_proto.common)


class DenseTable(Table):
681

Z
ziyoujiyi 已提交
682 683 684 685 686
    def __init__(self, context, send_ctx):
        super(DenseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
687

Z
ziyoujiyi 已提交
688 689
    def _set(self, table_proto):
        ctx = self.ctx
690 691
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == True):
Z
ziyoujiyi 已提交
692 693 694 695
            return

        table_proto.table_id = ctx.table_id()

Z
ziyoujiyi 已提交
696
        table_proto.type = the_one_ps_pb2.PS_DENSE_TABLE
697
        table_proto.table_class = "MemoryDenseTable"
Z
ziyoujiyi 已提交
698 699 700 701 702 703 704 705
        table_proto.shard_num = 256

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = 1

        self.common.table_name = "MergedDense"
        self.common.parse_by_optimizer(ctx, self.context)
706 707
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
708 709 710 711 712 713
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)


class Server:
714

Z
ziyoujiyi 已提交
715
    def __init__(self):
Z
ziyoujiyi 已提交
716
        pass
Z
ziyoujiyi 已提交
717

Z
ziyoujiyi 已提交
718 719
    def _set(self):
        pass
Z
ziyoujiyi 已提交
720 721


Z
ziyoujiyi 已提交
722
class DownpourServer(Server):
723

Z
ziyoujiyi 已提交
724 725 726 727 728
    def __init__(self):
        super(DownpourServer, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
729 730 731


class Worker:
732

Z
ziyoujiyi 已提交
733
    def __init__(self):
Z
ziyoujiyi 已提交
734
        pass
Z
ziyoujiyi 已提交
735

Z
ziyoujiyi 已提交
736 737
    def _set(self):
        pass
Z
ziyoujiyi 已提交
738 739


Z
ziyoujiyi 已提交
740
class DownpourWorker(Worker):
741

Z
ziyoujiyi 已提交
742 743 744 745 746
    def __init__(self):
        super(DownpourWorker, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
747 748 749


class fsClient:
750

Z
ziyoujiyi 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763
    def __init__(self, fs_client_param):
        self.fs_client_param = fs_client_param

    def _set(self, proto):
        if not text_format.MessageToString(self.fs_client_param):
            return
        proto.uri = self.fs_client_param.uri
        proto.user = self.fs_client_param.user
        proto.passwd = self.fs_client_param.passwd
        proto.hadoop_bin = self.fs_client_param.hadoop_bin


class PsDescBuilder(object):
764

Z
ziyoujiyi 已提交
765 766 767 768 769 770
    def __init__(self, context):
        self.context = context
        self.is_sync = context['is_sync']
        self.ps_mode = context['ps_mode']
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.use_ps_gpu = context['use_ps_gpu']
771
        self.barrier_table_id = None
772 773
        print("is_heter_ps_mode in the_one_ps.py? {}".format(
            self.is_heter_ps_mode))
Z
ziyoujiyi 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786
        self.send_ctx = get_the_one_send_context(
            self.context,
            use_origin_program=True,
            split_dense_table=self.is_heter_ps_mode)

        self.tensor_table_dict = {}  # TODO
        self._server_sub_program = []

        self.tables = self._get_tables()

        self.service = self._get_service()
        self.fs_client = self._get_fs_client()

Z
ziyoujiyi 已提交
787
        self.ps_desc = the_one_ps_pb2.PSParameter()
788
        self.fl_desc = the_one_ps_pb2.FLParameter()
Z
ziyoujiyi 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

    def _get_tensor_tables(self):
        program_idx = 0
        if not self.tensor_table_dict:
            self._server_sub_program.append(Program().desc)
        tables = []
        for table_name in self.tensor_table_dict:
            tables.append(globals()['TensorTable'](len(tables), tensor_dict,
                                                   self.context['role_maker']))
            program_idx += 1
        return tables

    def _get_tables(self):
        tables = []
        for idx, (name, ctx) in enumerate(self.send_ctx.items()):
            if ctx.is_sparse():
                if self.ps_mode == DistributedMode.GEO:
                    tables.append(globals()['GeoSparseTable'](self.context,
                                                              ctx))
                else:
                    tables.append(globals()['SparseTable'](self.context, ctx))
            else:
                tables.append(globals()['DenseTable'](self.context, ctx))
        self.tensor_tables = self._get_tensor_tables()
        tables.extend(self.tensor_tables)
        tables.append(globals()['BarrierTable'](self.context, len(tables)))
815
        print("test_fl_ps: tables len: {}".format(len(tables)))
Z
ziyoujiyi 已提交
816 817 818 819 820
        return tables

    def _get_service(self):
        if self.use_ps_gpu:
            return GpuService()
Z
ziyoujiyi 已提交
821
        else:
Z
ziyoujiyi 已提交
822 823 824 825 826
            return Service()

    def _get_fs_client(self):
        return fsClient(self.context["user_defined_strategy"].fs_client_param)

827 828 829
    def build_fl_client_desc(self, client_info):
        pass

Z
ziyoujiyi 已提交
830 831 832 833 834 835 836 837
    def build_worker_desc(self):
        for table in self.tables:
            table_proto = self.ps_desc.worker_param.downpour_worker_param.downpour_table_param.add(
            )
            table._set(table_proto)
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
838 839
            if type(table) == BarrierTable and self.barrier_table_id is None:
                self.barrier_table_id = table.idx
Z
ziyoujiyi 已提交
840 841
        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
842
        self.fs_client._set(self.ps_desc.fs_client_param)
Z
ziyoujiyi 已提交
843 844 845
        return text_format.MessageToString(self.ps_desc)

    def build_server_desc(self):
846
        self.sparse_table_maps = {}
Z
ziyoujiyi 已提交
847 848 849 850
        for table in self.tables:
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
Z
ziyoujiyi 已提交
851
            if table_proto.type == the_one_ps_pb2.PS_SPARSE_TABLE and table_proto.common is not None:
Z
ziyoujiyi 已提交
852 853 854 855 856 857 858
                self.sparse_table_maps[
                    table_proto.common.table_name] = table_proto.table_id

        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        self.fs_client._set(self.ps_desc.fs_client_param)
        return text_format.MessageToString(self.ps_desc)
Z
ziyoujiyi 已提交
859 860 861


class TheOnePSRuntime(RuntimeBase):
862

Z
ziyoujiyi 已提交
863 864 865 866 867
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
868
        self._coordinator = None
Z
ziyoujiyi 已提交
869 870
        self._server_sub_program = []
        self._heter_client = None
871
        self._send_ctx = None
Z
ziyoujiyi 已提交
872 873 874 875

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
876 877
        self.role_id = get_role_id(self.role_maker)
        self.debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
W
wangguanqun 已提交
878

Z
ziyoujiyi 已提交
879
        self.origin_main_program = context["origin_main_program"]
Z
ziyoujiyi 已提交
880 881 882 883 884
        self.origin_main_programs = context.get("origin_main_programs",
                                                [self.origin_main_program])
        self.context["origin_main_programs"] = self.origin_main_programs
        self.context["origin_startup_programs"] = context.get(
            'origin_startup_programs', [context['origin_startup_program']])
Z
ziyoujiyi 已提交
885 886 887
        self.context[
            'is_heter_ps_mode'] = self.role_maker._is_heter_parameter_server_mode
        self.is_heter_ps_mode = self.context['is_heter_ps_mode']
888 889
        self.context['trainer'] = TrainerRuntimeConfig(
            context['valid_strategy'])
Z
ziyoujiyi 已提交
890
        self.context['ps_mode'] = self.context['trainer'].mode
W
wangguanqun 已提交
891 892
        self.context['use_ps_gpu'] = context['valid_strategy'].a_sync_configs[
            'use_ps_gpu']
Z
ziyoujiyi 已提交
893
        self.context['is_sync'] = True if self.context[
Z
ziyoujiyi 已提交
894 895
            'ps_mode'] == DistributedMode.SYNC else False
        self.context['grad_name_to_param_name'] = {}
W
wangguanqun 已提交
896 897
        self.context['tensor_table'] = {}
        build_var_distributed(self.context)
Z
ziyoujiyi 已提交
898

899 900
        self.trainer_endpoints = get_trainer_endpoints(self.role_maker)

901
        self.endpoints = get_ps_endpoints(self.role_maker)
Z
ziyoujiyi 已提交
902
        self.string_hosts = []
903
        for idx, ep in enumerate(self.endpoints):
Z
ziyoujiyi 已提交
904 905 906 907
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            self.string_hosts.append(pshost.serialize_to_string())

908 909 910 911 912 913 914 915 916 917
        self.with_coordinator = self.role_maker._with_coordinator
        self.coordinator_hosts = []
        if self.with_coordinator:
            print("fl-ps > all ps addrs: {}".format(self.string_hosts))
            coordinator_endpoints = self.role_maker._get_coordinator_endpoints()
            for idx, ep in enumerate(coordinator_endpoints):
                ip, port = ep.split(":")
                pshost = fluid.core.PSHost(ip, int(port), idx)
                self.coordinator_hosts.append(pshost.serialize_to_string())

Z
ziyoujiyi 已提交
918 919
        self.ps_desc_builder = PsDescBuilder(self.context)

920
    def _init_all_params(self, scopes, send_ctx, recv_map):
921
        all_var_names = []
922 923 924 925 926 927 928
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
929
            #print("init params:", idx, table_id, var_names)
930
            self._worker.push_dense_params(scope, table_id, var_names)
931 932
            all_var_names.extend(var_names)
        return all_var_names
933 934

    def _pull_all_dense(self, scopes, send_ctx, recv_map):
935
        all_var_names = []
936 937 938 939 940 941 942
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
943
            #print("pull all dense:", idx, table_id, var_names)
944
            self._worker.pull_dense_params(scope, table_id, var_names)
945 946
            all_var_names.extend(var_names)
        return all_var_names
947

948
    def _init_params(self, program, scope, send_ctx, recv_map):
949
        all_var_names = []
950 951 952 953 954 955 956 957 958
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("init params:", table_id, var_names)
            self._worker.push_dense_params(scope, table_id, var_names)
959 960
            all_var_names.extend(var_names)
        return all_var_names
961

962
    def _pull_dense(self, program, scope, send_ctx, recv_map):
963
        all_var_names = []
964 965 966 967 968 969 970 971 972
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("pull dense:", table_id, var_names)
            self._worker.pull_dense_params(scope, table_id, var_names)
973 974
            all_var_names.extend(var_names)
        return all_var_names
975 976

    def _init_worker(self, scopes=None):
Z
ziyoujiyi 已提交
977
        worker_desc = self.ps_desc_builder.build_worker_desc()
Z
ziyoujiyi 已提交
978 979 980 981 982 983
        if self.context['use_ps_gpu']:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
984 985 986 987
            gpus_env = [int(s) for s in gpus_env.split(",")]
            main_program._fleet_opt["worker_places"] = gpus_env
            PSGPU = fluid.core.PSGPU()
            PSGPU.init_gpu_ps(gpus_env)
Z
ziyoujiyi 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=self.is_heter_ps_mode,
1002
            ep_list=self.endpoints)
1003
        self._send_ctx = send_ctx
Z
ziyoujiyi 已提交
1004 1005
        trainer_config = self.context['trainer']

1006 1007
        if self.debug:
            print("worker_desc: \n{}".format(worker_desc))
Z
ziyoujiyi 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()

1019
        kwargs["barrier_table_id"] = self.ps_desc_builder.barrier_table_id
Z
ziyoujiyi 已提交
1020 1021 1022 1023 1024

        if self.context['ps_mode'] == DistributedMode.SYNC:
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

W
wangguanqun 已提交
1025
        print("communicator config:", trainer_config.get_communicator_flags())
Z
ziyoujiyi 已提交
1026

1027 1028 1029 1030 1031 1032 1033 1034
        self._worker.init_worker(worker_desc, self.string_hosts, self.role_id)
        self.trainer_endpoint = get_trainer_endpoint(self.role_maker)
        print("fl-ps > trainer_endpoint: {}".format(self.trainer_endpoint))
        print("fl-ps > with_coordinator? {}".format(self.with_coordinator))
        print("fl-ps > coordinator addr: {}".format(self.coordinator_hosts))
        if self.with_coordinator:
            self._worker.init_fl_worker(self.coordinator_hosts, self.role_id,
                                        self.trainer_endpoint)
1035

1036 1037
        if self.context[
                'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode:
1038 1039 1040
            self._communicator = Communicator(
                trainer_config.mode, kwargs,
                trainer_config.get_communicator_flags())
1041
            self._communicator.init_with_ctx(send_ctx, dense_map, worker_desc,
1042 1043
                                             self.string_hosts,
                                             fluid.global_scope())
Z
ziyoujiyi 已提交
1044
        fleet.util.barrier()
1045 1046 1047

        # info = self._communicator.get_client_info()
        info = self._worker.get_client_info()
Z
ziyoujiyi 已提交
1048
        if isinstance(info, list) and len(info) > 0:
1049 1050
            all_info = self.role_maker._all_gather(
                info[0])  # 收集其他 client 的 service 地址
Z
ziyoujiyi 已提交
1051 1052 1053 1054
            # for unittest
            if not isinstance(all_info, list):
                warnings.warn("gloo may not initialize correctly")
                all_info = [all_info]
1055 1056 1057 1058 1059

            # self._communicator.set_clients(all_info)
            # self._communicator.create_client_to_client_connection()
            self._worker.set_clients(all_info)
            self._worker.create_client2client_connection()
Z
ziyoujiyi 已提交
1060 1061 1062 1063 1064 1065 1066 1067
            print('create c2c connection done')
        else:
            print('cannot create c2c connection')

        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

Z
ziyoujiyi 已提交
1068 1069
        # for GEO & heter_ps
        init_params = dense_map
Z
ziyoujiyi 已提交
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        # if not is_test:
        #     self._communicator.init_params(init_params)
        #     fleet.util.barrier()
        # self._communicator.pull_dense(init_params)
        # fleet.util.barrier()

        if scopes is None:
            if len(self.origin_main_programs) > 1:
                raise ValueError(
                    "You must set the scope list when you have Multiple programs"
                )
            scopes = [fluid.global_scope()]
        if len(self.origin_main_programs) != len(scopes):
            raise VauleError("len(programs) != len(scopes)")

        self.scopes = scopes
Z
ziyoujiyi 已提交
1087
        if not is_test:
1088 1089
            if self.context[
                    'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode == True:
1090 1091
                self._communicator.init_params(init_params)
            else:
D
danleifeng 已提交
1092
                if not self.context['use_ps_gpu']:
1093
                    if self.role_id == 0:
1094
                        print("entering self._init_all_params()")
D
danleifeng 已提交
1095
                        self._init_all_params(scopes, send_ctx, dense_map)
1096

1097 1098
            fleet.util.barrier()  # 保证 0 号 worker 参数 push_dense_param over

D
danleifeng 已提交
1099
        if not self.context['use_ps_gpu']:
Z
ziyoujiyi 已提交
1100
            self._pull_all_dense(scopes, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1101 1102
        fleet.util.barrier()

1103 1104
        if self.context[
                'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode == True:
1105 1106 1107 1108
            if not self._communicator.is_running():
                self._communicator.start()
            else:
                warnings.warn("communicator has been initialized, skip")
Z
ziyoujiyi 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            wait_server_ready(self.role_maker._get_pserver_endpoints())
            if self.is_heter_ps_mode and self.role_maker._get_next_trainers(
            ) != []:
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.is_heter_ps_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
1124 1125 1126
                self._heter_client = HeterClient(
                    next_trainers, previous_trainers,
                    self.role_maker._role_id())  # --> HeterClient::GetInstance
Z
ziyoujiyi 已提交
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    def _init_coordinator(self, scopes=None):
        if self._coordinator == None:
            self._coordinator = Coordinator(self.string_hosts)

        print(">>> curr node ip: {}".format(self.coordinator_hosts[0]))
        print(">>> all trainer endpoints: {}".format(self.trainer_endpoints))
        self._coordinator.start_coordinator(self.coordinator_hosts[0],
                                            self.trainer_endpoints)

    def _make_fl_strategy(self):
        if self._coordinator == None:
            assert ("Coordinator py object is null!")
        else:
            self._coordinator.make_fl_strategy()

Z
ziyoujiyi 已提交
1143
    def _init_server(self, dirname=None, var_names=None, **kwargs):
Z
ziyoujiyi 已提交
1144
        server_desc = self.ps_desc_builder.build_server_desc()
Z
ziyoujiyi 已提交
1145 1146 1147 1148
        trainers = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())

1149 1150
        if self.debug:
            print("server_desc: \n{}".format(server_desc))
W
wangguanqun 已提交
1151

Z
ziyoujiyi 已提交
1152
        self._server = fluid.core.DistFleetWrapper()
1153
        self._server.init_server(server_desc, self.string_hosts, self.role_id,
Z
ziyoujiyi 已提交
1154
                                 trainers, self._server_sub_program)
Z
ziyoujiyi 已提交
1155

W
wangguanqun 已提交
1156 1157 1158
        dist_varnames = get_sparse_tablenames(self.origin_main_programs, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                False)
Z
ziyoujiyi 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
1168 1169
                        "fleet.init server can only load sparse variables in {}"
                        .format(distributed_varnames))
Z
ziyoujiyi 已提交
1170 1171 1172 1173 1174
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

Z
ziyoujiyi 已提交
1175
        sparse_table_maps = self.ps_desc_builder.sparse_table_maps
Z
ziyoujiyi 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
            self._server.load_sparse(dirname, "0", table_id)

    def _run_server(self):
        ep = get_ps_endpoint(self.role_maker)
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _stop_worker(self):
1190 1191 1192
        if self.context['ps_mode'] == DistributedMode.GEO:
            self._communicator.stop()
        self._worker.stop_worker()
Z
ziyoujiyi 已提交
1193 1194 1195 1196 1197 1198
        if self.is_heter_ps_mode:
            assert self._heter_client != None, "heter client should not be None in heterps mode"
            self._heter_client.stop()

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
1199

Z
ziyoujiyi 已提交
1200 1201 1202 1203
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

W
wangguanqun 已提交
1204
            from .utils.public import _get_varname_parts
Z
ziyoujiyi 已提交
1205 1206 1207 1208
            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

1209
            if origin_varname.startswith("learning_rate_"):
Z
ziyoujiyi 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

W
wangguanqun 已提交
1220 1221 1222 1223 1224 1225 1226
    def _get_inference_model_path(self, dirname):
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        return model_path

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    def _ps_save_dense_params(self,
                              executor,
                              dirname,
                              scope,
                              program,
                              var_names=None):
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=self.is_heter_ps_mode,
            ep_list=self.endpoints)
        if program is None or len(self.origin_main_programs) == 1:
            program = self.origin_main_programs[0]
        dense_var_names = self._pull_dense(program, scope, send_ctx, dense_map)
        save_var_names = dense_var_names if var_names is None else var_names
        vars = [program.global_block().var(i) for i in save_var_names]
        import paddle
        with paddle.static.scope_guard(scope):
            paddle.static.save_vars(executor,
                                    "./",
                                    program,
                                    vars=vars,
                                    filename=dirname)

Z
ziyoujiyi 已提交
1253 1254
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
W
wangguanqun 已提交
1255 1256
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                     True)
Z
ziyoujiyi 已提交
1257
        values = []
W
wangguanqun 已提交
1258
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1259 1260 1261 1262
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # only save sparse param to local
                try:
W
wangguanqun 已提交
1263
                    self._worker.recv_and_save_model(id, model_path)
Z
ziyoujiyi 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
                except:
                    pass
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
            values.extend(names)
        # self._worker.save_all_model(dirname, mode)
        return values

    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
1275 1276 1277
                                       main_program=None,
                                       mode=0,
                                       **kwargs):
Z
ziyoujiyi 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        if main_program is None:
1299
            main_program = self.context['origin_main_program']
Z
ziyoujiyi 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        self._worker.save_all_model(dirname, mode)

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
                                           export_for_deployment=True,
                                           mode=0):
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        import paddle
1331 1332 1333 1334 1335
        program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(program))
        scope = self.scopes[idx]
        print("save inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

        infer_program = paddle.static.normalize_program(program, feed_vars,
                                                        target_vars)

        infer_program._copy_dist_param_info_from(program)

W
wangguanqun 已提交
1351
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
        model_basename = "__model__"
        model_basename = os.path.join(model_path, model_basename)
        paddle.save(infer_program, model_basename)

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparse_names = self._save_sparse_params(executor, dirname, sparses,
                                                main_program, mode)

1364 1365 1366
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
Z
ziyoujiyi 已提交
1367 1368
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1369 1370 1371
            use_origin_program=self.is_heter_ps_mode,
            ep_list=self.endpoints)
        self._pull_dense(program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1372 1373 1374 1375 1376

        generate_vars = self.context[
            "user_defined_strategy"].trainer_desc_configs["stat_var_names"]
        generate_vars = [var for var in generate_vars]
        remaining_vars = list(
1377 1378
            filter(TheOnePSRuntime.__exclude_vars(sparse_names),
                   infer_program.list_vars()))
Z
ziyoujiyi 已提交
1379 1380

        for var in remaining_vars:
1381
            tensor = var.get_value(scope)
1382 1383 1384
            paddle.save(tensor,
                        os.path.join(model_path, var.name),
                        use_binary_format=True)
Z
ziyoujiyi 已提交
1385

Z
zhaocaibei123 已提交
1386
    def _save_cache_model(self, dirname, **kwargs):
1387
        mode = kwargs.get("mode", 1)
Z
zhaocaibei123 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
        table_id = kwargs.get("table_id", 0)
        self._worker.client_flush()
        fleet.util.barrier()
        cache_threshold = 0.0

        if self.role_maker._is_first_worker():
            cache_threshold = self._worker.get_cache_threshold(table_id)
        #check cache threshold right or not
        fleet.util.barrier()

        if self.role_maker._is_first_worker():
            self._worker.cache_shuffle(table_id, dirname, mode, cache_threshold)

        fleet.util.barrier()

        feasign_num = -1
        if self.role_maker._is_first_worker():
            feasign_num = self._worker.save_cache(table_id, dirname, mode)

        fleet.util.barrier()
        return feasign_num

1410 1411 1412 1413 1414 1415
    def _check_save_pre_patch_done(self):
        fleet.util.barrier()
        if self.role_maker._is_first_worker():
            self._worker.check_save_pre_patch_done()
        fleet.util.barrier()

Z
ziyoujiyi 已提交
1416
    def _load_sparse_params(self, dirname, context, main_program, mode):
W
wangguanqun 已提交
1417
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
Z
ziyoujiyi 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
                                                     True)
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

    def _ps_inference_load_inference_model(self,
                                           dirname,
                                           mode=0,
                                           main_program=None):
1433 1434 1435 1436 1437
        main_program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(main_program))
        scope = self.scopes[idx]
        print("load inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)

        sparse_varnames = self._load_sparse_params(dirname, sparses,
                                                   main_program, mode)

1453 1454 1455 1456 1457 1458 1459 1460
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=self.is_heter_ps_mode,
            ep_list=self.endpoints)

Z
ziyoujiyi 已提交
1461
        recv_dense_varnames = []
1462
        for _, names in dense_map.items():
Z
ziyoujiyi 已提交
1463 1464 1465 1466 1467
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
1468 1469
            filter(TheOnePSRuntime.__exclude_vars(loaded_varnames),
                   main_program.list_vars()))
Z
ziyoujiyi 已提交
1470

1471
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1472 1473 1474 1475 1476
        import paddle
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
            tensor = paddle.load(os.path.join(model_path, var.name))
1477
            var.set_value(tensor, scope)
Z
ziyoujiyi 已提交
1478

1479
        self._init_params(main_program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1480

1481 1482 1483 1484
    def _save_one_table(self, table_id, path, mode):
        if self.role_maker._is_first_worker():
            self._worker.save_one_model(table_id, path, mode)
        fleet.util.barrier()
Z
ziyoujiyi 已提交
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
    def _save_dense_params(self, *args, **kwargs):
        if self.role_maker._is_first_worker():
            self._ps_save_dense_params(*args, **kwargs)
        fleet.util.barrier()

    def _save_persistables(self, *args, **kwargs):
        if self.role_maker._is_first_worker():
            self._save_distributed_persistables(*args, **kwargs)
        fleet.util.barrier()

    def _save_inference_model(self, *args, **kwargs):
        if self.role_maker._is_first_worker():
            self._ps_inference_save_inference_model(*args, **kwargs)
        fleet.util.barrier()

    def _load_one_table(self, table_id, path, mode):
        if self.role_maker._is_first_worker():
            self._worker.load_one_table(table_id, path, mode)
        fleet.util.barrier()

    def _load_persistables(self, path, mode):
        if self.role_maker._is_first_worker():
            self._worker.load_model(path, mode)
        fleet.util.barrier()

    def _load_inference_model(self, path, mode):
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1513
            self._ps_inference_load_inference_model(path, mode)
1514
        fleet.util.barrier()
Z
ziyoujiyi 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

    def _shrink(self, threshold=None):
        if threshold is not None:
            warnings.warn(
                "The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
            )
        else:
            threshold = 0

        fleet.util.barrier()
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1526
            sparses = get_the_one_recv_context(
Z
ziyoujiyi 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535
                self.context,
                is_dense=False,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode,
                use_origin_program=True)

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()