vgg.py 6.3 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LielinJiang 已提交
15 16
import paddle
import paddle.nn as nn
L
LielinJiang 已提交
17

18
from paddle.utils.download import get_weights_path_from_url
L
LielinJiang 已提交
19 20 21 22 23 24 25 26 27 28 29

__all__ = [
    'VGG',
    'vgg11',
    'vgg13',
    'vgg16',
    'vgg19',
]

model_urls = {
    'vgg16': ('https://paddle-hapi.bj.bcebos.com/models/vgg16.pdparams',
L
LielinJiang 已提交
30
              '89bbffc0f87d260be9b8cdc169c991c4')
L
LielinJiang 已提交
31 32 33
}


L
LielinJiang 已提交
34
class VGG(nn.Layer):
L
LielinJiang 已提交
35 36 37 38
    """VGG model from
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_

    Args:
L
LielinJiang 已提交
39
        features (nn.Layer): vgg features create by function make_layers.
L
LielinJiang 已提交
40 41 42 43 44 45
        num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer 
                            will not be defined. Default: 1000.

    Examples:
        .. code-block:: python

46 47
            from paddle.vision.models import VGG
            from paddle.vision.models.vgg import make_layers
L
LielinJiang 已提交
48 49 50 51 52 53 54 55 56

            vgg11_cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']

            features = make_layers(vgg11_cfg)

            vgg11 = VGG(features)

    """

L
LielinJiang 已提交
57
    def __init__(self, features, num_classes=1000):
L
LielinJiang 已提交
58 59
        super(VGG, self).__init__()
        self.features = features
C
cnn 已提交
60
        self.avgpool = nn.AdaptiveAvgPool2D((7, 7))
L
LielinJiang 已提交
61 62 63 64 65 66 67 68
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(),
            nn.Dropout(),
            nn.Linear(4096, num_classes), )
L
LielinJiang 已提交
69 70 71

    def forward(self, x):
        x = self.features(x)
L
LielinJiang 已提交
72 73 74
        x = self.avgpool(x)
        x = paddle.flatten(x, 1)
        x = self.classifier(x)
L
LielinJiang 已提交
75 76 77 78 79 80 81 82
        return x


def make_layers(cfg, batch_norm=False):
    layers = []
    in_channels = 3
    for v in cfg:
        if v == 'M':
C
cnn 已提交
83
            layers += [nn.MaxPool2D(kernel_size=2, stride=2)]
L
LielinJiang 已提交
84
        else:
C
cnn 已提交
85
            conv2d = nn.Conv2D(in_channels, v, kernel_size=3, padding=1)
L
LielinJiang 已提交
86
            if batch_norm:
C
cnn 已提交
87
                layers += [conv2d, nn.BatchNorm2D(v), nn.ReLU()]
L
LielinJiang 已提交
88
            else:
L
LielinJiang 已提交
89
                layers += [conv2d, nn.ReLU()]
L
LielinJiang 已提交
90
            in_channels = v
L
LielinJiang 已提交
91
    return nn.Sequential(*layers)
L
LielinJiang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119


cfgs = {
    'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'B':
    [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'D': [
        64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512,
        512, 512, 'M'
    ],
    'E': [
        64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512,
        'M', 512, 512, 512, 512, 'M'
    ],
}


def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
    model = VGG(make_layers(
        cfgs[cfg], batch_norm=batch_norm),
                num_classes=1000,
                **kwargs)

    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])
120 121

        param = paddle.load(weight_path)
122
        model.load_dict(param)
L
LielinJiang 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136

    return model


def vgg11(pretrained=False, batch_norm=False, **kwargs):
    """VGG 11-layer model
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.

    Examples:
        .. code-block:: python

137
            from paddle.vision.models import vgg11
L
LielinJiang 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

            # build model
            model = vgg11()

            # build vgg11 model with batch_norm
            model = vgg11(batch_norm=True)
    """
    model_name = 'vgg11'
    if batch_norm:
        model_name += ('_bn')
    return _vgg(model_name, 'A', batch_norm, pretrained, **kwargs)


def vgg13(pretrained=False, batch_norm=False, **kwargs):
    """VGG 13-layer model
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.

    Examples:
        .. code-block:: python

161
            from paddle.vision.models import vgg13
L
LielinJiang 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

            # build model
            model = vgg13()

            # build vgg13 model with batch_norm
            model = vgg13(batch_norm=True)
    """
    model_name = 'vgg13'
    if batch_norm:
        model_name += ('_bn')
    return _vgg(model_name, 'B', batch_norm, pretrained, **kwargs)


def vgg16(pretrained=False, batch_norm=False, **kwargs):
    """VGG 16-layer model 
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.

    Examples:
        .. code-block:: python

185
            from paddle.vision.models import vgg16
L
LielinJiang 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

            # build model
            model = vgg16()

            # build vgg16 model with batch_norm
            model = vgg16(batch_norm=True)
    """
    model_name = 'vgg16'
    if batch_norm:
        model_name += ('_bn')
    return _vgg(model_name, 'D', batch_norm, pretrained, **kwargs)


def vgg19(pretrained=False, batch_norm=False, **kwargs):
    """VGG 19-layer model 
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.

    Examples:
        .. code-block:: python

209
            from paddle.vision.models import vgg19
L
LielinJiang 已提交
210 211 212 213 214 215 216 217 218 219 220

            # build model
            model = vgg19()

            # build vgg19 model with batch_norm
            model = vgg19(batch_norm=True)
    """
    model_name = 'vgg19'
    if batch_norm:
        model_name += ('_bn')
    return _vgg(model_name, 'E', batch_norm, pretrained, **kwargs)