op_desc.cc 43.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_desc.h"
16

17
#include <string>
18

19
#include "glog/logging.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/block_desc.h"
21
#include "paddle/fluid/framework/op_call_stack.h"
Y
yuyang18 已提交
22
#include "paddle/fluid/framework/op_proto_maker.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/shape_inference.h"
M
minqiyang 已提交
25
#include "paddle/fluid/framework/var_type_inference.h"
26
#include "paddle/fluid/operators/ops_extra_info.h"
R
Ruibiao Chen 已提交
27
#include "paddle/utils/blank.h"
Y
Yu Yang 已提交
28

F
fengjiayi 已提交
29 30 31
namespace paddle {
namespace framework {

32 33
class CompileTimeInferShapeContext : public InferShapeContext {
 public:
Y
Yu Yang 已提交
34
  CompileTimeInferShapeContext(const OpDesc &op, const BlockDesc &block);
35 36 37 38 39

  bool HasInput(const std::string &name) const override;

  bool HasOutput(const std::string &name) const override;

40 41
  bool HasAttr(const std::string &name) const override;

42 43
  bool HasInputs(const std::string &name) const override;

44 45
  bool HasOutputs(const std::string &name,
                  bool allow_null = false) const override;
46 47 48

  AttrReader Attrs() const override;

H
hong 已提交
49
  std::vector<std::string> Inputs(const std::string &name) const override;
50

H
hong 已提交
51
  std::vector<std::string> Outputs(const std::string &name) const override;
52

53 54 55
  std::string GetInputNameByIdx(size_t idx) const override {
    auto &op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
56 57
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
58 59 60
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
61 62 63
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
64 65 66 67 68 69 70
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto &op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
71 72
        idx,
        op_proto->outputs().size(),
73 74 75
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
76 77 78
            op_.Type(),
            idx,
            op_proto->outputs().size()));
79 80 81
    return op_proto->outputs()[idx].name();
  }

82 83 84
  void ShareDim(const std::string &in,
                const std::string &out,
                size_t i = 0,
85
                size_t j = 0) override {
86 87
    PADDLE_ENFORCE_LT(i,
                      Inputs(in).size(),
88 89 90
                      platform::errors::InvalidArgument(
                          "The input variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
91 92 93 94
                          Inputs(in).size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      Outputs(out).size(),
95 96 97
                      platform::errors::InvalidArgument(
                          "The output variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
98 99
                          Outputs(out).size(),
                          j));
100

H
hong 已提交
101 102
    std::string input_n = Inputs(in)[i];
    std::string output_n = Outputs(out)[j];
103

104 105
    PADDLE_ENFORCE_NE(input_n,
                      framework::kEmptyVarName,
106 107
                      platform::errors::InvalidArgument(
                          "The input variable %s[%d] is empty.", in, i));
108 109
    PADDLE_ENFORCE_NE(output_n,
                      framework::kEmptyVarName,
110 111
                      platform::errors::InvalidArgument(
                          "The output variable %s[%d] is empty.", out, j));
112 113 114 115

    auto *in_var = block_.FindVarRecursive(input_n);
    auto *out_var = block_.FindVarRecursive(output_n);

116
    PADDLE_ENFORCE_EQ(
117 118
        in_var->GetType(),
        out_var->GetType(),
119 120 121
        platform::errors::InvalidArgument(
            "The type of input %s and output %s do not match. The input type "
            "is %s, output type is %s.",
122 123 124
            input_n,
            output_n,
            DataTypeToString(in_var->GetType()),
125
            DataTypeToString(out_var->GetType())));
126 127 128 129

    SetDim(output_n, GetDim(input_n));
  }

H
hong 已提交
130 131 132 133 134 135
  void ShareAllLoD(const std::string &in,
                   const std::string &out) const override {
    auto &in_var_names = op_.Input(in);
    auto &out_var_names = op_.Output(out);

    PADDLE_ENFORCE_EQ(
136 137
        in_var_names.size(),
        out_var_names.size(),
H
hong 已提交
138
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
139
            "Op [%s]:  Input var number should be equal with output var number",
H
hong 已提交
140 141 142 143 144 145 146 147 148 149 150
            op_.Type()));

    for (size_t i = 0; i < in_var_names.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      auto *in_var = block_.FindVarRecursive(in_var_names[i]);
      auto *out_var = block_.FindVarRecursive(out_var_names[i]);
      if (in_var->GetType() != proto::VarType::LOD_TENSOR &&
          in_var->GetType() != proto::VarType::LOD_TENSOR_ARRAY) {
151 152
        VLOG(3) << "input " << in
                << " is not phi::DenseTensor or LoDTensorArray.";
H
hong 已提交
153 154 155 156 157 158
        return;
      }
      out_var->SetLoDLevel(in_var->GetLoDLevel());
    }
  }

159 160 161
  void ShareLoD(const std::string &in,
                const std::string &out,
                size_t i = 0,
Q
Qiao Longfei 已提交
162
                size_t j = 0) const override {
163 164
    PADDLE_ENFORCE_LT(i,
                      Inputs(in).size(),
165 166 167
                      platform::errors::InvalidArgument(
                          "The input variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
168 169 170 171
                          Inputs(in).size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      Outputs(out).size(),
172 173 174
                      platform::errors::InvalidArgument(
                          "The output variable index is out of range, expected "
                          "index less than %d, but received index is %d.",
175 176 177 178
                          Outputs(out).size(),
                          j));
    PADDLE_ENFORCE_NE(Inputs(in)[i],
                      framework::kEmptyVarName,
179 180
                      platform::errors::InvalidArgument(
                          "The input variable %s[%d] is empty.", in, i));
181 182
    PADDLE_ENFORCE_NE(Outputs(out)[j],
                      framework::kEmptyVarName,
183 184
                      platform::errors::InvalidArgument(
                          "The output variable %s[%d] is empty.", out, j));
Q
Qiao Longfei 已提交
185 186
    auto *in_var = block_.FindVarRecursive(Inputs(in)[i]);
    auto *out_var = block_.FindVarRecursive(Outputs(out)[j]);
C
chengduo 已提交
187 188
    if (in_var->GetType() != proto::VarType::LOD_TENSOR &&
        in_var->GetType() != proto::VarType::LOD_TENSOR_ARRAY) {
189 190
      VLOG(3) << "input " << in
              << " is not phi::DenseTensor or LoDTensorArray.";
X
fix  
Xin Pan 已提交
191 192
      return;
    }
193
    out_var->SetLoDLevel(in_var->GetLoDLevel());
Q
Qiao Longfei 已提交
194
  }
D
dzhwinter 已提交
195

196
  int32_t GetLoDLevel(const std::string &in, size_t i = 0) const override {
197 198
    PADDLE_ENFORCE_LT(i,
                      Inputs(in).size(),
199 200 201
                      platform::errors::InvalidArgument(
                          "The input variable index is out of range, input "
                          "variable %s of operator %s only has %d elements.",
202 203 204 205 206
                          in,
                          op_.Type(),
                          Inputs(in).size()));
    PADDLE_ENFORCE_NE(Inputs(in)[i],
                      framework::kEmptyVarName,
207 208
                      platform::errors::InvalidArgument(
                          "The input variable %s[%d] of operator %s is empty.",
209 210 211
                          in,
                          i,
                          op_.Type()));
C
chengduo 已提交
212
    auto *in_var = block_.FindVarRecursive(Inputs(in)[i]);
213
    PADDLE_ENFORCE_NOT_NULL(
214 215 216 217 218 219
        in_var,
        platform::errors::NotFound(
            "The input variable %s[%d] of operator %s is not found.",
            in,
            i,
            op_.Type()));
220
    return in_var->GetLoDLevel();
C
chengduo 已提交
221 222
  }

223 224
  void SetLoDLevel(const std::string &out,
                   int32_t lod_level,
225
                   size_t j = 0) const override {
226 227
    PADDLE_ENFORCE_LT(j,
                      Outputs(out).size(),
228 229 230
                      platform::errors::InvalidArgument(
                          "The output variable index is out of range, output "
                          "variable %s of operator %s only has %d elements.",
231 232 233 234 235
                          out,
                          op_.Type(),
                          Outputs(out).size()));
    PADDLE_ENFORCE_NE(Outputs(out)[j],
                      framework::kEmptyVarName,
236 237
                      platform::errors::InvalidArgument(
                          "The output variable %s[%d] of operator %s is empty.",
238 239 240
                          out,
                          j,
                          op_.Type()));
241
    auto *out_var = block_.FindVarRecursive(Outputs(out)[j]);
242
    PADDLE_ENFORCE_NOT_NULL(
243 244 245 246 247 248
        out_var,
        platform::errors::NotFound(
            "The output variable %s[%d] of operator %s is not found.",
            out,
            j,
            op_.Type()));
249 250 251
    if (lod_level >= 0) {
      out_var->SetLoDLevel(lod_level);
    }
252 253
  }

C
Chen Weihang 已提交
254
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
255
  GetInputVarPtrs(const std::string &name) const override {
256
    const std::vector<std::string> arg_names = Inputs(name);
C
Chen Weihang 已提交
257
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
258
    res.reserve(arg_names.size());
259 260 261
    std::transform(arg_names.begin(),
                   arg_names.end(),
                   std::back_inserter(res),
262 263 264 265 266 267
                   [this](const std::string &name) {
                     return block_.FindVarRecursive(name);
                   });
    return res;
  }

C
Chen Weihang 已提交
268
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
269
  GetOutputVarPtrs(const std::string &name) const override {
270
    const std::vector<std::string> arg_names = Outputs(name);
C
Chen Weihang 已提交
271
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
272
    res.reserve(arg_names.size());
273 274 275
    std::transform(arg_names.begin(),
                   arg_names.end(),
                   std::back_inserter(res),
276 277 278 279 280 281
                   [this](const std::string &name) {
                     return block_.FindVarRecursive(name);
                   });
    return res;
  }

X
Xin Pan 已提交
282 283
  DDim GetInputDim(const std::string &name) const override {
    const std::vector<std::string> &arg_names = Inputs(name);
284 285
    PADDLE_ENFORCE_EQ(arg_names.size(),
                      1UL,
286 287 288
                      platform::errors::InvalidArgument(
                          "The input(%s) should hold only one element, but now "
                          "it holds %d elements.",
289 290
                          name,
                          arg_names.size()));
X
Xin Pan 已提交
291 292 293 294 295 296 297 298
    return this->GetDim(arg_names[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string &name) const override {
    const std::vector<std::string> &arg_names = Inputs(name);
    return GetDims(arg_names);
  }

299 300
  bool IsRuntime() const override;

301 302
  bool IsRunMKLDNNKernel() const override;

303 304 305 306
  proto::VarType::Type GetInputVarType(const std::string &name) const override {
    return GetVarType(Inputs(name).at(0));
  }

X
Xin Pan 已提交
307 308 309 310 311 312 313 314 315 316
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string &name) const override {
    return GetVarTypes(Inputs(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string &name) const override {
    return GetVarTypes(Outputs(name));
  }

X
Xin Pan 已提交
317
  void SetOutputDim(const std::string &name, const DDim &dim) override {
H
hong 已提交
318
    auto arg_names = Outputs(name);
319 320
    PADDLE_ENFORCE_EQ(arg_names.size(),
                      1UL,
321 322 323
                      platform::errors::InvalidArgument(
                          "The iutput(%s) should hold only one element, but "
                          "now it holds %d elements.",
324 325
                          name,
                          arg_names.size()));
X
Xin Pan 已提交
326 327 328 329 330
    SetDim(arg_names[0], dim);
  }

  void SetOutputsDim(const std::string &name,
                     const std::vector<DDim> &dims) override {
H
hong 已提交
331
    auto names = Outputs(name);
X
Xin Pan 已提交
332 333 334
    SetDims(names, dims);
  }

335 336 337 338 339 340 341 342
  const phi::ArgumentMappingFn *GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature *GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

343
 protected:
X
Xin Pan 已提交
344 345 346 347 348
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<std::string> &names) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(names.size());
    std::transform(
349 350 351 352 353
        names.begin(),
        names.end(),
        retv.begin(),
        std::bind(std::mem_fn(&CompileTimeInferShapeContext::GetVarType),
                  this,
X
Xin Pan 已提交
354 355 356 357 358
                  std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(const std::string &name) const;
Q
Qiao Longfei 已提交
359

X
Xin Pan 已提交
360 361
  DDim GetDim(const std::string &name) const {
    auto var = block_.FindVarRecursive(name);
362 363
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::NotFound("Variable %s is not found.", name));
X
Xin Pan 已提交
364 365 366
    DDim res;
    try {
      auto shape = var->GetShape();
367
      res = phi::make_ddim(shape);
X
Xin Pan 已提交
368 369 370 371 372 373 374 375 376 377 378
    } catch (...) {
      VLOG(5) << "GetDim of variable " << name << " error";
      std::rethrow_exception(std::current_exception());
    }
    return res;
  }

  std::vector<DDim> GetDims(const std::vector<std::string> &names) const {
    std::vector<DDim> ret;
    ret.reserve(names.size());
    std::transform(
379 380 381
        names.begin(),
        names.end(),
        std::back_inserter(ret),
X
Xin Pan 已提交
382 383 384
        [this](const std::string &name) { return this->GetDim(name); });
    return ret;
  }
385

X
Xin Pan 已提交
386 387 388 389 390
  void SetDim(const std::string &name, const DDim &dim);

  void SetDims(const std::vector<std::string> &names,
               const std::vector<DDim> &dims) {
    size_t length = names.size();
391 392
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
393 394 395
                      platform::errors::InvalidArgument(
                          "The input variables number(%d) and input dimensions "
                          "number(%d) do not match.",
396 397
                          length,
                          dims.size()));
X
Xin Pan 已提交
398 399 400 401 402 403 404
    for (size_t i = 0; i < length; ++i) {
      if (names[i] == framework::kEmptyVarName) {
        continue;
      }
      SetDim(names[i], dims[i]);
    }
  }
405

F
fengjiayi 已提交
406 407 408 409
  std::vector<DDim> GetRepeatedDims(const std::string &name) const override;

  void SetRepeatedDims(const std::string &name,
                       const std::vector<DDim> &dims) override;
F
fengjiayi 已提交
410

Y
Yu Yang 已提交
411 412
  const OpDesc &op_;
  const BlockDesc &block_;
413 414
};

415 416 417 418 419 420 421
static void InitRuntimeAttributeMapByOpExtraInfo(const std::string &op_type,
                                                 AttributeMap *runtime_attrs) {
  const auto &extra_attr_map =
      operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
  runtime_attrs->insert(extra_attr_map.begin(), extra_attr_map.end());
}

422 423 424 425
OpDesc::OpDesc(const std::string &type,
               const VariableNameMap &inputs,
               const VariableNameMap &outputs,
               const AttributeMap &attrs) {
426
  desc_.set_type(type);
F
fengjiayi 已提交
427 428 429
  inputs_ = inputs;
  outputs_ = outputs;
  attrs_ = attrs;
F
Fix bug  
fengjiayi 已提交
430
  need_update_ = true;
L
liuwei1031 已提交
431
  block_ = nullptr;
432
  InitRuntimeAttributeMapByOpExtraInfo(type, &runtime_attrs_);
F
fengjiayi 已提交
433 434
}

435 436 437 438 439 440
OpDesc::OpDesc(const OpDesc &other) {
  CopyFrom(other);
  block_ = other.block_;
  need_update_ = true;
}

X
Xin Pan 已提交
441 442 443 444
OpDesc::OpDesc(const OpDesc &other, BlockDesc *block) {
  CopyFrom(other);
  block_ = block;
  need_update_ = true;
445 446 447
  for (auto &iter : attrs_) {
    UpdateVarAttr(iter.first, iter.second);
  }
X
Xin Pan 已提交
448 449
}

450
void OpDesc::CopyFrom(const OpDesc &op_desc) {
F
fengjiayi 已提交
451 452 453 454
  desc_.set_type(op_desc.Type());
  inputs_ = op_desc.inputs_;
  outputs_ = op_desc.outputs_;
  attrs_ = op_desc.attrs_;
455 456
  runtime_attrs_ = op_desc.runtime_attrs_;
  // The record of original_id_ is only for auto parallel.
457
  original_id_ = op_desc.original_id_;
458 459 460
  if (op_desc.dist_attr_) {
    dist_attr_.reset(new OperatorDistAttr(*op_desc.dist_attr_));
  }
F
fengjiayi 已提交
461 462 463
  need_update_ = true;
}

F
fengjiayi 已提交
464
OpDesc::OpDesc(const proto::OpDesc &desc, BlockDesc *block)
465 466 467 468
    : desc_(desc), need_update_(false) {
  // restore inputs_
  int input_size = desc_.inputs_size();
  for (int i = 0; i < input_size; ++i) {
469
    const proto::OpDesc::Var &var = desc_.inputs(i);
470 471 472 473 474 475 476 477 478 479
    std::vector<std::string> &args = inputs_[var.parameter()];
    int argu_size = var.arguments_size();
    args.reserve(argu_size);
    for (int j = 0; j < argu_size; ++j) {
      args.push_back(var.arguments(j));
    }
  }
  // restore outputs_
  int output_size = desc_.outputs_size();
  for (int i = 0; i < output_size; ++i) {
480
    const proto::OpDesc::Var &var = desc_.outputs(i);
481 482 483 484 485 486 487 488
    std::vector<std::string> &args = outputs_[var.parameter()];
    int argu_size = var.arguments_size();
    args.reserve(argu_size);
    for (int j = 0; j < argu_size; ++j) {
      args.push_back(var.arguments(j));
    }
  }
  // restore attrs_
489
  InitRuntimeAttributeMapByOpExtraInfo(desc.type(), &runtime_attrs_);
490
  for (const proto::OpDesc::Attr &attr : desc_.attrs()) {
491
    const std::string &attr_name = attr.name();
492
    // The sub_block referred to by the BLOCK attr hasn't been added
493 494 495 496 497 498 499
    // to ProgramDesc class yet, we skip setting BLOCK/BLOCKS/VAR/VARS attr
    // here.
    auto attr_type = attr.type();
    if (attr_type != proto::AttrType::BLOCK &&
        attr_type != proto::AttrType::BLOCKS &&
        attr_type != proto::AttrType::VAR &&
        attr_type != proto::AttrType::VARS) {
500 501 502 503 504 505
      auto iter = runtime_attrs_.find(attr_name);
      if (iter == runtime_attrs_.end()) {
        attrs_[attr_name] = GetAttrValue(attr);
      } else {
        iter->second = GetAttrValue(attr);
      }
506
    }
507
  }
508
  this->block_ = block;
509 510
}

511 512 513 514 515 516 517 518 519
// Explicitly implement the assign operator, Since the added
// unique_ptr data member does not have the implicit assign operator.
OpDesc &OpDesc::operator=(const OpDesc &other) {
  CopyFrom(other);
  block_ = other.block_;
  need_update_ = true;
  return *this;
}

Y
Yu Yang 已提交
520
proto::OpDesc *OpDesc::Proto() {
521
  Flush();
522
  return &desc_;
F
fengjiayi 已提交
523 524
}

Y
Yu Yang 已提交
525
const std::vector<std::string> &OpDesc::Input(const std::string &name) const {
F
fengjiayi 已提交
526
  auto it = inputs_.find(name);
527
  PADDLE_ENFORCE_NE(
528 529 530 531
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Input %s cannot be found in operator %s.", name, Type()));
F
fengjiayi 已提交
532 533 534
  return it->second;
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
std::vector<std::string> OpDesc::Input(const std::string &name,
                                       bool with_attr_var) const {
  // Attribute with VarDesc type will consider as Input
  if (with_attr_var) {
    auto it = attrs_.find(name);
    if (it != attrs_.end() && HasAttrVar(it->second))
      return AttrVarNames(it->second);
  }
  return this->Input(name);
}

VariableNameMap OpDesc::Inputs(bool with_attr_var) const {
  if (!with_attr_var) {
    return inputs_;
  }
  VariableNameMap res = inputs_;
  for (auto &attr : FilterAttrVar(attrs_)) {
    res[attr.first] = AttrVarNames(attr.second);
  }
  return res;
}

std::vector<std::string> OpDesc::InputArgumentNames(bool with_attr_var) const {
F
Update  
fengjiayi 已提交
558
  std::vector<std::string> retv;
559
  for (auto &ipt : this->Inputs(with_attr_var)) {
F
Update  
fengjiayi 已提交
560 561 562 563 564
    retv.insert(retv.end(), ipt.second.begin(), ipt.second.end());
  }
  return retv;
}

Y
Yu Yang 已提交
565 566
void OpDesc::SetInput(const std::string &param_name,
                      const std::vector<std::string> &args) {
F
fengjiayi 已提交
567 568 569 570
  need_update_ = true;
  inputs_[param_name] = args;
}

Y
Yu Yang 已提交
571
const std::vector<std::string> &OpDesc::Output(const std::string &name) const {
F
fengjiayi 已提交
572
  auto it = outputs_.find(name);
573
  PADDLE_ENFORCE_NE(
574 575 576 577
      it,
      outputs_.end(),
      platform::errors::NotFound(
          "Output %s cannot be found in operator %s.", name, Type()));
F
fengjiayi 已提交
578 579 580
  return it->second;
}

581 582 583 584
bool OpDesc::HasOutput(const std::string &name) const {
  return outputs_.find(name) != outputs_.end();
}

Y
Yu Yang 已提交
585
std::vector<std::string> OpDesc::OutputArgumentNames() const {
F
Update  
fengjiayi 已提交
586 587 588 589 590 591 592
  std::vector<std::string> retv;
  for (auto &ipt : this->outputs_) {
    retv.insert(retv.end(), ipt.second.begin(), ipt.second.end());
  }
  return retv;
}

Y
Yu Yang 已提交
593 594
void OpDesc::SetOutput(const std::string &param_name,
                       const std::vector<std::string> &args) {
F
fengjiayi 已提交
595 596 597 598
  need_update_ = true;
  this->outputs_[param_name] = args;
}

599 600 601 602 603
void OpDesc::RemoveOutput(const std::string &name) {
  outputs_.erase(name);
  need_update_ = true;
}

604 605 606 607 608
void OpDesc::RemoveInput(const std::string &name) {
  inputs_.erase(name);
  need_update_ = true;
}

609 610 611 612 613 614 615 616 617 618
bool OpDesc::HasProtoAttr(const std::string &name) const {
  auto &op_info = OpInfoMap::Instance();
  if (op_info.Has(desc_.type())) {
    auto op_info_ptr = op_info.Get(desc_.type());
    if (op_info_ptr.HasOpProtoAndChecker()) {
      const proto::OpProto &proto = op_info_ptr.Proto();
      for (int i = 0; i != proto.attrs_size(); ++i) {
        const proto::OpProto::Attr &attr = proto.attrs(i);
        if (attr.name() == name) {
          return true;
L
luotao1 已提交
619 620
        }
      }
L
luotao1 已提交
621 622 623 624 625
    }
  }
  return false;
}

626 627 628 629
proto::AttrType OpDesc::GetAttrType(const std::string &name,
                                    bool with_attr_var) const {
  auto attr = this->GetAttr(name, with_attr_var);
  return static_cast<proto::AttrType>(attr.index() - 1);
F
fengjiayi 已提交
630 631
}

632
std::vector<std::string> OpDesc::AttrNames(bool with_attr_var) const {
F
fengjiayi 已提交
633 634 635
  std::vector<std::string> retv;
  retv.reserve(attrs_.size());
  for (auto &attr : attrs_) {
636
    if (!with_attr_var && HasAttrVar(attr.second)) continue;
F
fengjiayi 已提交
637 638 639 640 641
    retv.push_back(attr.first);
  }
  return retv;
}

642 643
bool OpDesc::HasAttr(const std::string &name, bool with_attr_var) const {
  auto iter = attrs_.find(name);
644 645 646 647 648 649 650
  bool is_found = true;
  if (iter == attrs_.end()) {
    iter = runtime_attrs_.find(name);
    if (iter == runtime_attrs_.end()) {
      is_found = false;
    }
  }
651 652 653 654 655 656
  if (with_attr_var) {
    return is_found;
  }
  return is_found && !HasAttrVar(iter->second);
}

657 658
void OpDesc::RemoveAttr(const std::string &name) {
  attrs_.erase(name);
659
  runtime_attrs_.erase(name);
660 661 662
  need_update_ = true;
}

Y
Yu Yang 已提交
663
void OpDesc::SetAttr(const std::string &name, const Attribute &v) {
664 665
  AttributeMap *attrs_ptr = &(this->attrs_);

666 667
  bool is_runtime_attr = false;

668 669 670 671
  const auto &extra_attr_map =
      operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(Type());
  auto extra_attr_iter = extra_attr_map.find(name);
  if (extra_attr_iter != extra_attr_map.end()) {
672
    is_runtime_attr = true;
673 674
    attrs_ptr = &(this->runtime_attrs_);
  }
M
minqiyang 已提交
675 676 677
  // NOTICE(minqiyang): pybind11 will take the empty list in python as
  // the std::vector<int> type in C++; so we have to change the attr's type
  // here if we meet this issue
R
Ruibiao Chen 已提交
678
  proto::AttrType attr_type = static_cast<proto::AttrType>(v.index() - 1);
M
minqiyang 已提交
679
  if (attr_type == proto::AttrType::INTS &&
R
Ruibiao Chen 已提交
680
      PADDLE_GET_CONST(std::vector<int>, v).size() == 0u) {
M
minqiyang 已提交
681
    // Find current attr via attr name and set the correct attribute value
682 683 684 685 686
    auto attr_type =
        is_runtime_attr
            ? static_cast<proto::AttrType>(extra_attr_iter->second.index() - 1)
            : GetProtoAttr(name).type();
    switch (attr_type) {
M
minqiyang 已提交
687
      case proto::AttrType::BOOLEANS: {
M
minqiyang 已提交
688 689
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to BOOLEANS";
690
        attrs_ptr->operator[](name) = std::vector<bool>();
M
minqiyang 已提交
691 692 693
        break;
      }
      case proto::AttrType::INTS: {
M
minqiyang 已提交
694 695
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to INTS";
696
        attrs_ptr->operator[](name) = std::vector<int>();
M
minqiyang 已提交
697 698
        break;
      }
699
      case proto::AttrType::LONGS: {
M
minqiyang 已提交
700 701
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from LONGS to LONGS";
702
        attrs_ptr->operator[](name) = std::vector<int64_t>();
703 704
        break;
      }
M
minqiyang 已提交
705
      case proto::AttrType::FLOATS: {
M
minqiyang 已提交
706 707
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to FLOATS";
708
        attrs_ptr->operator[](name) = std::vector<float>();
M
minqiyang 已提交
709 710
        break;
      }
711 712 713 714 715 716
      case proto::AttrType::FLOAT64S: {
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to FLOAT64S";
        this->attrs_[name] = std::vector<double>();
        break;
      }
M
minqiyang 已提交
717
      case proto::AttrType::STRINGS: {
M
minqiyang 已提交
718 719
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to STRINGS";
720
        attrs_ptr->operator[](name) = std::vector<std::string>();
M
minqiyang 已提交
721 722 723
        break;
      }
      case proto::AttrType::BLOCKS: {
M
minqiyang 已提交
724 725
        VLOG(11) << "SetAttr: " << Type() << ", " << name
                 << " from INTS to BLOCKS";
726
        attrs_ptr->operator[](name) = std::vector<BlockDesc *>();
M
minqiyang 已提交
727 728
        return;
      }
M
minqiyang 已提交
729
      default:
730
        PADDLE_THROW(platform::errors::Unimplemented(
731
            "Unsupported attribute type (code %d).", attr_type));
M
minqiyang 已提交
732
    }
M
minqiyang 已提交
733 734
    need_update_ = true;
    return;
M
minqiyang 已提交
735 736
  }

737
  // In order to set bool attr properly
738 739 740 741 742 743 744 745 746 747 748 749 750 751
  if (attr_type == proto::AttrType::INT) {
    if (HasProtoAttr(name) &&
        GetProtoAttr(name).type() == proto::AttrType::BOOLEAN) {
      attrs_ptr->operator[](name) = static_cast<bool>(PADDLE_GET_CONST(int, v));
      need_update_ = true;
      return;
    }
    if (extra_attr_iter != extra_attr_map.end() &&
        static_cast<proto::AttrType>(extra_attr_iter->second.index() - 1) ==
            proto::AttrType::BOOLEAN) {
      attrs_ptr->operator[](name) = static_cast<bool>(PADDLE_GET_CONST(int, v));
      need_update_ = true;
      return;
    }
752 753
  }

754
  attrs_ptr->operator[](name) = v;
F
fengjiayi 已提交
755 756 757
  need_update_ = true;
}

758 759 760 761 762 763 764 765 766 767
void OpDesc::SetVarAttr(const std::string &name, VarDesc *var) {
  this->attrs_[name] = var;
  need_update_ = true;
}

void OpDesc::SetVarsAttr(const std::string &name, std::vector<VarDesc *> vars) {
  this->attrs_[name] = vars;
  need_update_ = true;
}

A
Abhinav Arora 已提交
768 769
void OpDesc::SetBlockAttr(const std::string &name, BlockDesc *block) {
  this->attrs_[name] = block;
F
fengjiayi 已提交
770
  need_update_ = true;
F
fengjiayi 已提交
771 772
}

773 774 775 776 777 778
void OpDesc::SetBlocksAttr(const std::string &name,
                           std::vector<BlockDesc *> blocks) {
  this->attrs_[name] = blocks;
  need_update_ = true;
}

Y
Yu Yang 已提交
779
void OpDesc::SetAttrMap(
F
fengjiayi 已提交
780 781 782 783 784
    const std::unordered_map<std::string, Attribute> &attr_map) {
  attrs_ = attr_map;
  need_update_ = true;
}

785 786 787 788 789 790
void OpDesc::SetRuntimeAttrMap(
    const std::unordered_map<std::string, Attribute> &attr_map) {
  runtime_attrs_ = attr_map;
  need_update_ = true;
}

791
Attribute OpDesc::GetAttr(const std::string &name, bool with_attr_var) const {
F
fengjiayi 已提交
792
  auto it = attrs_.find(name);
793 794
  if (it == attrs_.end()) {
    it = runtime_attrs_.find(name);
795 796 797 798
    PADDLE_ENFORCE_NE(
        it,
        runtime_attrs_.end(),
        platform::errors::NotFound("Attribute %s is not found.", name));
799
  }
800 801 802 803
  if (!with_attr_var) {
    PADDLE_ENFORCE_EQ(
        HasAttrVar(it->second),
        false,
804 805 806 807 808
        platform::errors::NotFound(
            "Attribute %s with constant value is not found, but found it with "
            "Variable(s) type, which maybe not supported in some scenarios "
            "currently, such as TensorRT et.al",
            name));
809
  }
F
fengjiayi 已提交
810 811 812
  return it->second;
}

M
minqiyang 已提交
813 814 815
const proto::OpProto::Attr &OpDesc::GetProtoAttr(
    const std::string &name) const {
  const proto::OpProto &proto = OpInfoMap::Instance().Get(Type()).Proto();
M
minqiyang 已提交
816 817 818 819 820 821 822
  for (int i = 0; i != proto.attrs_size(); ++i) {
    const proto::OpProto::Attr &attr = proto.attrs(i);
    if (attr.name() == name) {
      return attr;
    }
  }

823 824
  PADDLE_THROW(platform::errors::NotFound(
      "Attribute %s is not found in proto %s.", name, proto.type()));
M
minqiyang 已提交
825 826
}

Y
yuyang18 已提交
827
Attribute OpDesc::GetNullableAttr(const std::string &name) const {
Y
Fix bug  
yuyang18 已提交
828 829 830 831
  auto it = attrs_.find(name);
  if (it != attrs_.end()) {
    return it->second;
  } else {
Y
yuyang18 已提交
832
    return Attribute();
Y
Fix bug  
yuyang18 已提交
833 834 835
  }
}

G
gongweibao 已提交
836 837
std::vector<int> OpDesc::GetBlocksAttrIds(const std::string &name) const {
  auto it = attrs_.find(name);
838
  PADDLE_ENFORCE_NE(
839 840
      it,
      attrs_.end(),
841 842
      platform::errors::NotFound(
          "Attribute `%s` is not found in operator `%s`.", name, desc_.type()));
R
Ruibiao Chen 已提交
843
  auto blocks = PADDLE_GET_CONST(std::vector<BlockDesc *>, it->second);
G
gongweibao 已提交
844 845 846 847 848 849 850 851 852 853

  std::vector<int> ids;
  for (auto n : blocks) {
    ids.push_back(n->ID());
  }

  return ids;
}

int OpDesc::GetBlockAttrId(const std::string &name) const {
F
fengjiayi 已提交
854
  auto it = attrs_.find(name);
855
  PADDLE_ENFORCE_NE(
856 857
      it,
      attrs_.end(),
858 859
      platform::errors::NotFound(
          "Attribute `%s` is not found in operator `%s`.", name, desc_.type()));
R
Ruibiao Chen 已提交
860
  return PADDLE_GET_CONST(BlockDesc *, it->second)->ID();
F
fengjiayi 已提交
861 862
}

Y
Yu Yang 已提交
863
const std::unordered_map<std::string, Attribute> &OpDesc::GetAttrMap() const {
F
fengjiayi 已提交
864 865 866
  return attrs_;
}

867 868
const AttributeMap &OpDesc::GetRuntimeAttrMap() const { return runtime_attrs_; }

Y
Yu Yang 已提交
869
void OpDesc::Rename(const std::string &old_name, const std::string &new_name) {
Y
Yancey1989 已提交
870 871
  RenameInput(old_name, new_name);
  RenameOutput(old_name, new_name);
F
fengjiayi 已提交
872 873 874
  need_update_ = true;
}

Y
Yu Yang 已提交
875 876
void OpDesc::RenameOutput(const std::string &old_name,
                          const std::string &new_name) {
Y
Yang Yang(Tony) 已提交
877
  for (auto &output : outputs_) {
878 879
    std::replace(
        output.second.begin(), output.second.end(), old_name, new_name);
Y
Yang Yang(Tony) 已提交
880
  }
Y
yuyang18 已提交
881 882 883

  auto it = attrs_.find(framework::OpProtoAndCheckerMaker::OpRoleVarAttrName());
  if (it != attrs_.end()) {
R
Ruibiao Chen 已提交
884
    auto &op_vars = PADDLE_GET(std::vector<std::string>, it->second);
Y
yuyang18 已提交
885 886 887
    std::replace(op_vars.begin(), op_vars.end(), old_name, new_name);
  }

Y
Yang Yang(Tony) 已提交
888 889 890
  need_update_ = true;
}

Y
Yu Yang 已提交
891 892
void OpDesc::RenameInput(const std::string &old_name,
                         const std::string &new_name) {
Y
Yang Yang(Tony) 已提交
893 894 895
  for (auto &input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
Y
Yancey1989 已提交
896 897 898

  auto it = attrs_.find(framework::OpProtoAndCheckerMaker::OpRoleVarAttrName());
  if (it != attrs_.end()) {
R
Ruibiao Chen 已提交
899
    auto &op_vars = PADDLE_GET(std::vector<std::string>, it->second);
Y
Yancey1989 已提交
900 901 902
    std::replace(op_vars.begin(), op_vars.end(), old_name, new_name);
  }

Y
Yang Yang(Tony) 已提交
903 904 905
  need_update_ = true;
}

906
struct SetAttrDescVisitor {
907 908
  explicit SetAttrDescVisitor(proto::OpDesc::Attr *attr) : attr_(attr) {}
  mutable proto::OpDesc::Attr *attr_;
Y
Yu Yang 已提交
909 910
  void operator()(int v) const { attr_->set_i(v); }
  void operator()(float v) const { attr_->set_f(v); }
911
  void operator()(double v) const { attr_->set_float64(v); }
Y
Yu Yang 已提交
912
  void operator()(const std::string &v) const { attr_->set_s(v); }
Q
QI JUN 已提交
913 914 915 916 917 918 919

  // Please refer to https://github.com/PaddlePaddle/Paddle/issues/7162
  template <class T,
            class = typename std::enable_if<std::is_same<bool, T>::value>::type>
  void operator()(T b) const {
    attr_->set_b(b);
  }
Y
Yu Yang 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932

  void operator()(const std::vector<int> &v) const {
    VectorToRepeated(v, attr_->mutable_ints());
  }
  void operator()(const std::vector<float> &v) const {
    VectorToRepeated(v, attr_->mutable_floats());
  }
  void operator()(const std::vector<std::string> &v) const {
    VectorToRepeated(v, attr_->mutable_strings());
  }
  void operator()(const std::vector<bool> &v) const {
    VectorToRepeated(v, attr_->mutable_bools());
  }
933 934 935 936 937 938 939 940 941 942 943 944 945

  void operator()(const std::vector<VarDesc *> &v) const {
    std::vector<std::string> var_names;
    for (auto var : v) {
      var_names.emplace_back(var->Name());
    }
    VectorToRepeated(var_names, attr_->mutable_vars_name());
  }

  void operator()(const VarDesc *desc) const {
    attr_->set_var_name(desc->Name());
  }

946 947 948
  void operator()(const std::vector<BlockDesc *> &v) const {
    std::vector<int> blocks_idx;
    for (auto blk : v) {
T
tangwei12 已提交
949
      blocks_idx.push_back(blk->ID());
950 951 952
    }
    VectorToRepeated(blocks_idx, attr_->mutable_blocks_idx());
  }
T
tangwei12 已提交
953 954 955

  void operator()(BlockDesc *desc) const { attr_->set_block_idx(desc->ID()); }

956
  void operator()(int64_t v) const { attr_->set_l(v); }
T
tangwei12 已提交
957 958 959 960 961

  void operator()(const std::vector<int64_t> &v) const {
    VectorToRepeated(v, attr_->mutable_longs());
  }

962 963 964 965
  void operator()(const std::vector<double> &v) const {
    VectorToRepeated(v, attr_->mutable_float64s());
  }

R
Ruibiao Chen 已提交
966
  void operator()(paddle::blank) const {
967 968 969 970
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method of SetAttrDescVisitor object for "
        "`boosst::blank` type."));
  }
Y
Yu Yang 已提交
971 972
};

Y
Yu Yang 已提交
973
void OpDesc::Flush() {
L
Leo Chen 已提交
974 975
  VLOG(4) << "Flush "
          << " " << Type() << " " << need_update_;
F
fengjiayi 已提交
976
  if (need_update_) {
977
    this->desc_.mutable_inputs()->Clear();
F
fengjiayi 已提交
978
    for (auto &ipt : inputs_) {
979
      auto *input = desc_.add_inputs();
F
fengjiayi 已提交
980 981 982 983
      input->set_parameter(ipt.first);
      VectorToRepeated(ipt.second, input->mutable_arguments());
    }

984
    this->desc_.mutable_outputs()->Clear();
F
fengjiayi 已提交
985
    for (auto &opt : outputs_) {
986
      auto *output = desc_.add_outputs();
F
fengjiayi 已提交
987 988 989 990
      output->set_parameter(opt.first);
      VectorToRepeated(opt.second, output->mutable_arguments());
    }

991
    this->desc_.mutable_attrs()->Clear();
992 993 994 995 996 997 998 999 1000
    auto set_attr_desc = [this](const std::string &attr_name,
                                const Attribute &attr) -> void {
      auto *attr_desc = desc_.add_attrs();
      attr_desc->set_name(attr_name);
      attr_desc->set_type(static_cast<proto::AttrType>(attr.index() - 1));
      SetAttrDescVisitor visitor(attr_desc);
      paddle::visit(visitor, attr);
    };

L
Leo Chen 已提交
1001 1002
    std::vector<std::pair<std::string, Attribute>> sorted_attrs{attrs_.begin(),
                                                                attrs_.end()};
1003 1004 1005 1006

    std::vector<std::pair<std::string, Attribute>> sorted_runtime_attrs{
        runtime_attrs_.begin(), runtime_attrs_.end()};

L
Leo Chen 已提交
1007 1008 1009 1010 1011
    std::sort(
        sorted_attrs.begin(),
        sorted_attrs.end(),
        [](std::pair<std::string, Attribute> a,
           std::pair<std::string, Attribute> b) { return a.first < b.first; });
1012 1013 1014 1015 1016
    std::sort(
        sorted_runtime_attrs.begin(),
        sorted_runtime_attrs.end(),
        [](std::pair<std::string, Attribute> a,
           std::pair<std::string, Attribute> b) { return a.first < b.first; });
1017

L
Leo Chen 已提交
1018
    for (auto &attr : sorted_attrs) {
1019 1020
      set_attr_desc(attr.first, attr.second);
    }
1021
    for (auto &attr : sorted_runtime_attrs) {
1022
      set_attr_desc(attr.first, attr.second);
F
fengjiayi 已提交
1023 1024 1025 1026 1027
    }

    need_update_ = false;
  }
}
Y
Yu Yang 已提交
1028

Y
Yu Yang 已提交
1029
void OpDesc::CheckAttrs() {
1030 1031
  PADDLE_ENFORCE_EQ(Type().empty(),
                    false,
1032 1033
                    platform::errors::PreconditionNotMet(
                        "CheckAttrs() can not be called before type is set."));
Y
Yu Yang 已提交
1034 1035 1036 1037 1038 1039
  auto *checker = OpInfoMap::Instance().Get(Type()).Checker();
  if (checker == nullptr) {
    // checker is not configured. That operator could be generated by Paddle,
    // not by users.
    return;
  }
1040
  VLOG(10) << "begin to check attribute of " << Type();
T
tangwei12 已提交
1041
  checker->Check(&attrs_);
1042 1043 1044 1045 1046 1047 1048
  const auto &extra_attr_checkers =
      operators::ExtraInfoUtils::Instance().GetExtraAttrsChecker(Type());
  if (!extra_attr_checkers.empty()) {
    for (const auto &extra_checker : extra_attr_checkers) {
      extra_checker(&runtime_attrs_, false);
    }
  }
F
fengjiayi 已提交
1049 1050
}

H
hong 已提交
1051
void OpDesc::InferShape(const BlockDesc &block) {
1052 1053
  try {
    VLOG(3) << "CompileTime infer shape on " << Type();
H
hong 已提交
1054
    auto &op_info = OpInfoMap::Instance().Get(this->Type());
1055
    this->CheckAttrs();
H
hong 已提交
1056
    auto &infer_shape = op_info.infer_shape_;
1057
    PADDLE_ENFORCE_EQ(
1058 1059
        static_cast<bool>(infer_shape),
        true,
1060 1061
        platform::errors::NotFound(
            "Operator %s's infer_shape is not registered.", this->Type()));
1062 1063 1064 1065 1066
    CompileTimeInferShapeContext ctx(*this, block);
    if (VLOG_IS_ON(10)) {
      std::ostringstream sout;
      auto inames = this->InputArgumentNames();
      sout << " From [";
1067 1068
      std::copy(inames.begin(),
                inames.end(),
1069 1070 1071
                std::ostream_iterator<std::string>(sout, ", "));
      sout << "] to [";
      auto onames = this->OutputArgumentNames();
1072 1073
      std::copy(onames.begin(),
                onames.end(),
1074 1075 1076 1077 1078
                std::ostream_iterator<std::string>(sout, ", "));
      sout << "]";
      VLOG(10) << sout.str();
    }
    infer_shape(&ctx);
1079
  } catch (platform::EnforceNotMet &exception) {
1080
    framework::AppendErrorOpHint(Type(), &exception);
1081 1082 1083 1084
    throw std::move(exception);
  } catch (...) {
    std::rethrow_exception(std::current_exception());
  }
Y
Yu Yang 已提交
1085 1086
}

Y
Yu Yang 已提交
1087
void OpDesc::InferVarType(BlockDesc *block) const {
X
Xin Pan 已提交
1088 1089
  // There are a few places that var type can be set.
  // When VarDesc is created, default set to LOD_TENSOR.
T
tianshuo78520a 已提交
1090
  // When output variable is created, default is default set to LOD_TENSOR.
X
Xin Pan 已提交
1091 1092
  // We limit here to be the only place that operator defines its customized
  // var type inference. Hence, we don't do any "default" setting here.
Y
Yu Yang 已提交
1093 1094
  auto &info = OpInfoMap::Instance().Get(this->Type());
  if (info.infer_var_type_) {
M
minqiyang 已提交
1095
    InferVarTypeContext context(this, block);
M
minqiyang 已提交
1096
    info.infer_var_type_(&context);
Y
Yu Yang 已提交
1097 1098 1099
  }
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
OperatorDistAttr *OpDesc::MutableDistAttr() {
  if (dist_attr_) {
    return dist_attr_.get();
  } else {
    dist_attr_.reset(new OperatorDistAttr(*this));
    return dist_attr_.get();
  }
}

void OpDesc::SetDistAttr(const OperatorDistAttr &dist_attr) {
  MutableDistAttr();
  *dist_attr_ = dist_attr;
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
void OpDesc::UpdateVarAttr(const std::string &name, const Attribute &attr) {
  auto attr_type = static_cast<proto::AttrType>(attr.index() - 1);
  auto type = GetAttrType(name, true);
  if (type == proto::AttrType::VAR) {
    PADDLE_ENFORCE_EQ(
        attr_type,
        type,
        platform::errors::InvalidArgument(
            "Required attr.type == proto::AttrType::VAR, but received %s",
            attr_type));
    auto *var_desc = PADDLE_GET_CONST(VarDesc *, attr);
    VLOG(3) << "Update AttrVar " << name << " with " << var_desc->Name();
    attrs_[name] = FindVarRecursive(var_desc->Name());
  } else if (type == proto::AttrType::VARS) {
    PADDLE_ENFORCE_EQ(
        attr_type,
        type,
        platform::errors::InvalidArgument(
            "Required attr.type == proto::AttrType::VARS, but received %s",
            attr_type));
    auto vars_desc = PADDLE_GET_CONST(std::vector<VarDesc *>, attr);
    std::vector<VarDesc *> new_val;
    for (auto &var_desc : vars_desc) {
      VLOG(3) << "Update AttrVars " << name << " with " << var_desc->Name();
      new_val.emplace_back(FindVarRecursive(var_desc->Name()));
    }
    attrs_[name] = std::move(new_val);
  }
}

VarDesc *OpDesc::FindVarRecursive(const std::string &name) {
  auto *cur_block = block_;
  while (cur_block != nullptr && cur_block->ID() >= 0) {
    auto *var = block_->FindVar(name);
    if (var != nullptr) {
      return var;
    }
    cur_block = cur_block->ParentBlock();
  }
  PADDLE_THROW(platform::errors::NotFound(
      "Not found Var(%s) from Block(%d) back into global Block.",
      name,
      block_->ID()));
}

1159
CompileTimeInferShapeContext::CompileTimeInferShapeContext(
Y
Yu Yang 已提交
1160
    const OpDesc &op, const BlockDesc &block)
1161 1162 1163
    : op_(op), block_(block) {}

bool CompileTimeInferShapeContext::HasInput(const std::string &name) const {
1164 1165
  auto inputs = op_.Inputs(/*with_attr_var=*/true);
  if (inputs.find(name) == inputs.end()) {
1166 1167
    return false;
  }
1168 1169
  const std::vector<std::string> &input_names =
      op_.Input(name, /*with_attr_var=*/true);
1170 1171 1172 1173
  auto length = input_names.size();
  if (length == 0) {
    return false;
  }
1174
  PADDLE_ENFORCE_EQ(
1175 1176
      length,
      1UL,
1177 1178
      platform::errors::InvalidArgument("Input(%s) should have only one value, "
                                        "but it has %d values now.",
1179 1180
                                        name,
                                        length));
1181 1182 1183 1184
  return block_.HasVarRecursive(input_names[0]);
}

bool CompileTimeInferShapeContext::HasOutput(const std::string &name) const {
1185 1186 1187
  if (op_.Outputs().find(name) == op_.Outputs().end()) {
    return false;
  }
1188 1189 1190 1191 1192
  const std::vector<std::string> &output_names = op_.Output(name);
  auto length = output_names.size();
  if (length == 0) {
    return false;
  }
1193 1194
  PADDLE_ENFORCE_EQ(length,
                    1UL,
1195 1196 1197
                    platform::errors::InvalidArgument(
                        "Output(%s) should have only one value, "
                        "but it has %d values now.",
1198 1199
                        name,
                        length));
1200 1201 1202
  return block_.HasVarRecursive(output_names[0]);
}

1203
bool CompileTimeInferShapeContext::HasAttr(const std::string &name) const {
1204
  return op_.HasAttr(name, /*with_attr_var=*/false);
1205 1206
}

1207
bool CompileTimeInferShapeContext::HasInputs(const std::string &name) const {
1208 1209
  auto inputs = op_.Inputs(/*with_attr_var=*/true);
  if (inputs.find(name) == inputs.end()) {
1210 1211
    return false;
  }
1212 1213
  const std::vector<std::string> &input_names =
      op_.Input(name, /*with_attr_var=*/true);
1214 1215 1216 1217 1218 1219 1220 1221 1222
  if (input_names.empty()) {
    return false;
  }
  for (auto &input : input_names) {
    if (!block_.HasVarRecursive(input)) return false;
  }
  return true;
}

1223 1224
bool CompileTimeInferShapeContext::HasOutputs(const std::string &name,
                                              bool allow_null) const {
1225 1226 1227
  if (op_.Outputs().find(name) == op_.Outputs().end()) {
    return false;
  }
1228 1229 1230 1231
  const std::vector<std::string> &output_names = op_.Output(name);
  if (output_names.empty()) {
    return false;
  }
Y
YuanRisheng 已提交
1232
  if (!allow_null) {
1233 1234 1235
    for (auto &output : output_names) {
      if (!block_.HasVarRecursive(output)) return false;
    }
1236
  }
Y
YuanRisheng 已提交
1237
  return true;
1238 1239 1240
}

AttrReader CompileTimeInferShapeContext::Attrs() const {
1241
  return AttrReader(op_.GetAttrMap(), op_.GetRuntimeAttrMap());
1242 1243
}

H
hong 已提交
1244
std::vector<std::string> CompileTimeInferShapeContext::Inputs(
1245
    const std::string &name) const {
1246
  return op_.Input(name, /*with_attr_var=*/true);
1247 1248
}

H
hong 已提交
1249
std::vector<std::string> CompileTimeInferShapeContext::Outputs(
1250 1251 1252 1253
    const std::string &name) const {
  return op_.Output(name);
}

F
fengjiayi 已提交
1254
std::vector<DDim> CompileTimeInferShapeContext::GetRepeatedDims(
F
fengjiayi 已提交
1255 1256
    const std::string &name) const {
  auto var = block_.FindVarRecursive(name);
1257 1258
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::NotFound("Variable %s is not found.", name));
F
fengjiayi 已提交
1259 1260 1261 1262
  std::vector<DDim> res;
  try {
    auto shapes = var->GetShapes();
    for (const auto &s : shapes) {
1263
      res.push_back(phi::make_ddim(s));
F
fengjiayi 已提交
1264 1265
    }
  } catch (...) {
M
minqiyang 已提交
1266
    VLOG(5) << "GetRepeatedDim of variable " << name << " error.";
F
fengjiayi 已提交
1267 1268 1269
    std::rethrow_exception(std::current_exception());
  }
  return res;
1270 1271 1272 1273
}

void CompileTimeInferShapeContext::SetDim(const std::string &name,
                                          const DDim &dim) {
F
fengjiayi 已提交
1274
  block_.FindVarRecursive(name)->SetShape(vectorize(dim));
1275
}
F
fengjiayi 已提交
1276 1277 1278 1279

void CompileTimeInferShapeContext::SetRepeatedDims(
    const std::string &name, const std::vector<DDim> &dims) {
  auto var = block_.FindVarRecursive(name);
1280 1281
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::NotFound("Variable %s is not found.", name));
F
fengjiayi 已提交
1282
  std::vector<std::vector<int64_t>> dim_vec(dims.size());
1283
  std::transform(dims.begin(), dims.end(), dim_vec.begin(), phi::vectorize<>);
F
fengjiayi 已提交
1284
  var->SetShapes(dim_vec);
1285
}
F
fengjiayi 已提交
1286

1287 1288
bool CompileTimeInferShapeContext::IsRuntime() const { return false; }

1289 1290
bool CompileTimeInferShapeContext::IsRunMKLDNNKernel() const { return false; }

1291
proto::VarType::Type CompileTimeInferShapeContext::GetVarType(
1292 1293 1294
    const std::string &name) const {
  return block_.FindVarRecursive(name)->GetType();
}
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
std::vector<std::string> AttrVarNames(const Attribute &attr) {
  std::vector<std::string> vars_name;
  if (IsAttrVar(attr)) {
    vars_name.emplace_back(PADDLE_GET_CONST(VarDesc *, attr)->Name());
  } else if (IsAttrVars(attr)) {
    for (auto &iter : PADDLE_GET_CONST(std::vector<VarDesc *>, attr)) {
      vars_name.emplace_back(iter->Name());
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported Attribute value type `%s` for AttrVarNames",
        platform::demangle(attr.type().name())));
  }
  return vars_name;
}

F
fengjiayi 已提交
1312 1313
}  // namespace framework
}  // namespace paddle