nn.py 76.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69 70
    'fc',
    'embedding',
    'conv2d',
    'row_conv',
    'layer_norm',
D
dengkaipeng 已提交
71
    'spectral_norm',
X
Xin Pan 已提交
72 73 74 75 76 77
    'one_hot',
    'autoincreased_step_counter',
    'lod_reset',
    'clip',
    'clip_by_norm',
    'mul',
C
chengduo 已提交
78 79
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
Y
Yu Yang 已提交
80 81
]

82
OP_NAMEMAPPING = {
83 84 85 86 87 88 89 90
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
91
    'elementwise_mod': 'remainder',
92 93
}

Y
Yu Yang 已提交
94

95 96
def _get_reduce_dim(dim, input):
    """
97
    Internal function for reduce_sum, reduce_mean, reduce_prod.
98 99 100 101 102 103 104 105 106
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
107
                "The type of dim must be int, list, tuple or range, but received {}".format(
108
                    type(dim)
109 110
                )
            )
111 112 113 114 115 116 117 118 119 120
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


121
@dygraph_only
122 123 124
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
125 126 127 128
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
129
        op = getattr(_legacy_C_ops, op_name)
130 131 132
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
133 134
            op = getattr(
                _C_ops,
135 136
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
137 138 139
            out = op(x, y)

        if _in_legacy_dygraph():
140
            op = getattr(_legacy_C_ops, op_name)
141
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
142 143 144 145 146 147 148 149 150 151 152 153 154 155
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
156
    r"""
157 158
    :api_attr: Static Graph

159
    **Fully Connected Layer**
Y
Yu Yang 已提交
160

161 162 163
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
164
    which represents a fully connected weight matrix from each input unit to
165 166 167 168
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
169
    is not None, a bias variable will be created and added to the output.
170
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
171

172
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
173

174 175 176 177
    .. math::

        Out = Act({XW + b})

178
    When the input is a list of Tensor(or LoDTensor):
179 180 181

    .. math::

182
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
183 184 185

    In the above equation:

186 187 188
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
189
    * :math:`b`: The bias parameter created by this layer (if needed).
190
    * :math:`Act`: The activation function.
191
    * :math:`Out`: The output Tensor.
192 193 194

    .. code-block:: text

195 196 197 198 199 200 201 202 203 204 205 206 207 208
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
209 210 211 212 213 214 215 216 217 218 219 220 221
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
222
    Args:
223 224 225
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
226
        size(int): The number of output units in this layer, which also means the feature size of output
227 228
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
229
            two dimensions. If this happens, the multidimensional tensor will first be flattened
230 231
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
232
            dimensions will be flatten to form the first dimension of the final matrix (height of
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
248 249

    Raises:
250
        ValueError: If dimensions of the input Tensor is less than 2.
251 252 253 254

    Examples:
        .. code-block:: python

255
          import paddle.fluid as fluid
256 257
          import paddle
          paddle.enable_static()
258
          # when input is single tensor
259
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
260
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
261 262

          # when input are multiple tensors
263 264
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
265
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
266
    """
C
caoying03 已提交
267
    helper = LayerHelper("fc", **locals())
268
    check_type(input, 'input', (list, tuple, Variable), 'fc')
269 270
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
271
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
272
    dtype = helper.input_dtype()
273 274 275
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
276
    mul_results = []
277 278
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
279 280
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
281 282 283
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
284

285 286 287
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
288
        tmp = helper.create_variable_for_type_inference(dtype)
289 290 291 292 293 294
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
295 296 297 298
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
299
    else:
X
Xin Pan 已提交
300
        pre_bias = helper.create_variable_for_type_inference(dtype)
301 302 303 304 305 306
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
307 308 309 310
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
311 312


T
tangwei12 已提交
313
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
314 315 316 317 318 319 320 321 322
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
323
    r"""
324
    :api_attr: Static Graph
325

326 327 328 329 330 331 332 333 334 335 336 337
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

338
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
356

357 358 359 360
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
361

362
        Case 2:
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
378 379

    Args:
380 381 382 383 384 385
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
386
            affects the performance of the backwards gradient update. It is recommended to set
387
            True because sparse update is faster. But some optimizer does not support sparse update,
388
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
389 390 391 392 393
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
394
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
395 396 397 398 399 400
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
401
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
402
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
403
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
404 405 406
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
407

408
    Returns:
409
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
410

411 412
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
413

B
bdzhuxiaoning 已提交
414
          import paddle.fluid as fluid
415
          import numpy as np
416 417
          import paddle
          paddle.enable_static()
418

419 420
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
421
          # example 1
422 423 424 425 426 427 428 429 430
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
431
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
432 433 434
    """

    helper = LayerHelper('embedding', **locals())
435 436 437 438 439 440 441 442 443
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
444 445 446 447 448 449 450 451 452

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

453 454 455
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
456
    tmp = helper.create_variable_for_type_inference(dtype)
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
475 476 477
    return tmp


478 479 480 481 482 483 484 485 486 487 488
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
489
    r"""
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
535
        'is_distributed': True,
536 537
    }
    # this is only for compatible with embedding op
538 539 540 541 542 543 544 545 546
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
547 548 549 550 551
    if len(outs) == 1:
        return outs[0]
    return outs


552 553 554 555 556 557 558 559 560 561 562
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
563
    r"""
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
609
        'is_distributed': True,
610 611
    }
    # this is only for compatible with embedding op
612 613 614 615 616 617 618 619 620
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
621
    if len(outs) == 1:
Y
yaoxuefeng 已提交
622 623 624 625
        return outs[0]
    return outs


626 627 628
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
642
        float32 now.
Y
yaoxuefeng 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
662 663 664
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
665 666 667 668 669 670
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
671 672 673 674 675 676 677 678 679 680 681 682 683
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
684
    if len(outs) == 1:
685 686 687 688
        return outs[0]
    return outs


689 690 691
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
692
    r"""
H
hutuxian 已提交
693 694 695 696 697 698 699
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
700
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
701
            contains the IDs information.
702
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
703
            each embedding vector respectively.
704
        dtype(str): The dtype refers to the data type of output tensor. Only supports
705
        float32 now.
H
hutuxian 已提交
706 707 708 709 710 711 712 713 714 715

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
716
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
717 718 719 720
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
721 722 723
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
724 725 726 727 728 729
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
730 731 732 733 734 735 736 737 738 739 740 741 742
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
743 744 745 746 747
    if len(outs) == 1:
        return outs[0]
    return outs


748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
def conv2d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCHW",
):
763
    r"""
764 765
    :api_attr: Static Graph

C
chengduoZH 已提交
766
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
767
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
768
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
769
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
770 771 772 773 774 775
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
776
    for more details.
777 778 779
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
780

781
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
782

C
chengduoZH 已提交
783 784
    .. math::

C
refine  
chengduoZH 已提交
785
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
786

T
tensor-tang 已提交
787
    Where:
C
chengduoZH 已提交
788

L
liym27 已提交
789
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
790 791 792 793
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
794
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
795 796 797

    Example:

798 799
        - Input:

W
weixing02 已提交
800
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
801

W
weixing02 已提交
802
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
803

804
        - Output:
T
tensor-tang 已提交
805

W
weixing02 已提交
806
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
807

C
chengduoZH 已提交
808
        Where
809 810

        .. math::
C
chengduoZH 已提交
811

W
weixing02 已提交
812 813
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
814 815

    Args:
816
        input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
L
lvmengsi 已提交
817
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
818
        num_filters(int): The number of filter. It is as same as the output
819
            image channel.
820 821
        filter_size (int|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
L
lvmengsi 已提交
822 823
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
824 825
        stride (int|tuple): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
L
lvmengsi 已提交
826 827
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
828
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
829 830
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
831 832
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
L
lvmengsi 已提交
833
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
834 835 836
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
837
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
838 839
            points. If dilation is a tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
L
lvmengsi 已提交
840
            Default: dilation = 1.
841 842 843 844
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
845 846 847 848 849
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
850
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
851 852 853 854 855
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
856 857
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
858 859
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
860 861
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
L
lvmengsi 已提交
862
           None by default.
863
        data_format (str, optional): Specify the data format of the input, and the data format of the output
864
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
865 866
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
867 868

    Returns:
869 870 871
        A Tensor representing the conv2d, whose data type is the
        same with input. If act is None, the tensor storing the convolution
        result, and if act is not None, the tensor storing convolution
L
lvmengsi 已提交
872
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
873

874 875 876 877 878
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
879
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
880 881 882 883 884 885 886
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
887 888 889
    Examples:
        .. code-block:: python

890 891
          import paddle
          paddle.enable_static()
892

893 894 895
          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
          print(conv2d.shape) # [-1, 2, 30, 30]
Y
Yu Yang 已提交
896 897
    """

898 899 900
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'conv2d'
    )
901
    if len(input.shape) != 4:
902 903 904 905
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )
906
    num_channels = input.shape[1]
L
liym27 已提交
907
    if not isinstance(use_cudnn, bool):
908 909 910 911
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
L
liym27 已提交
912 913 914 915

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
916 917
            "Attr(data_format): %s." % str(data_format)
        )
L
liym27 已提交
918

919
    channel_last = data_format == "NHWC"
L
liym27 已提交
920 921 922 923
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
924 925
            "Received: %s." % (str(input.shape), str(num_channels))
        )
C
chengduo 已提交
926
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
927

928 929 930
    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
931 932
        raise ValueError(
            "the groups of input must be greater than 0, "
933 934
            "but received the groups of input is {}".format(groups)
        )
935 936 937 938 939
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
940 941
                ", the groups is {}".format(num_channels, input.shape, groups)
            )
942 943
        num_filter_channels = num_channels // groups

944
    l_type = 'conv2d'
945 946 947 948 949
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and not use_cudnn
    ):
950
        l_type = 'depthwise_conv2d'
951

952 953 954 955 956
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and core.is_compiled_with_rocm()
    ):
957 958
        l_type = 'depthwise_conv2d'

959 960
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
961
        if num_channels == groups and num_channels == num_filters:
962 963 964 965
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

966 967 968
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

C
chengduoZH 已提交
969 970
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
971
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
972

L
liym27 已提交
973 974 975 976 977 978 979 980 981 982 983 984
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
985 986
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
987 988 989 990 991 992
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
993 994
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
995 996 997
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
998 999 1000
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
1011 1012 1013
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
L
liym27 已提交
1014 1015
        if padding == "VALID":
            padding_algorithm = "VALID"
1016
            padding = [0, 0]
L
liym27 已提交
1017 1018
        elif padding == "SAME":
            padding_algorithm = "SAME"
1019
            padding = [0, 0]
L
liym27 已提交
1020 1021

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1022

M
minqiyang 已提交
1023
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1024 1025

    def _get_default_param_initializer():
C
chengduo 已提交
1026
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
1027 1028 1029 1030
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
1031 1032 1033
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
Y
Yu Yang 已提交
1034 1035 1036 1037 1038 1039
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
1040 1041
        default_initializer=_get_default_param_initializer(),
    )
Y
Yu Yang 已提交
1042

X
Xin Pan 已提交
1043
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1044

1045 1046 1047 1048 1049 1050
    if (
        core.is_compiled_with_cuda()
        and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
1051 1052
        use_cudnn = False

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
1072

1073 1074 1075 1076
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1077 1078 1079 1080

    return helper.append_activation(pre_act)


Y
yuyang18 已提交
1081
@templatedoc()
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
1093
    r"""
1094 1095
    :api_attr: Static Graph

1096 1097 1098 1099
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
1100 1101 1102

    The formula is as follows:

Y
yuyang18 已提交
1103
    ..  math::
G
guosheng 已提交
1104

1105
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
1106

1107
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
1108

1109
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
1110

1111 1112 1113 1114 1115
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
1116

G
guosheng 已提交
1117
    Args:
1118
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
1119 1120 1121 1122 1123
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
1124
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1125 1126 1127 1128
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
1129 1130
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
1131
            a default :code:`ParamAttr` would be added as scale. The
1132 1133
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
1134 1135
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
1136
            a default :code:`ParamAttr` would be added as bias. The
1137
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1138
        act(str, optional): Activation to be applied to the output of layer normalization.
1139 1140
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
1141 1142

    Returns:
1143
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
1144 1145 1146

    Examples:

1147 1148
        .. code-block:: python

1149 1150
            import paddle
            paddle.enable_static()
1151 1152 1153
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
1154
    """
1155 1156 1157
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
1158
    helper = LayerHelper('layer_norm', **locals())
1159 1160 1161
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
1162 1163 1164 1165 1166 1167 1168
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
1169 1170 1171 1172 1173 1174 1175 1176 1177
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
1178
        inputs['Scale'] = scale
1179 1180
    else:
        if param_attr:
T
tianshuo78520a 已提交
1181
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
1182
    if shift:
1183 1184 1185 1186 1187 1188
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
1189
        inputs['Bias'] = bias
1190 1191
    else:
        if bias_attr:
T
tianshuo78520a 已提交
1192
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
1193 1194

    # create output
1195 1196 1197 1198 1199 1200
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
1201
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
1213 1214 1215 1216

    return helper.append_activation(layer_norm_out)


D
dengkaipeng 已提交
1217
@templatedoc()
1218
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
1219
    r"""
1220 1221
    :api_attr: Static Graph

D
dengkaipeng 已提交
1222 1223
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
1224
    This operation calculates the spectral normalization value of weight parameters of
1225
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
1226 1227
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
1228

D
dengkaipeng 已提交
1229 1230 1231
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
1232
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
1233 1234

    Step 2:
T
tianshuo78520a 已提交
1235
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
1236 1237
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
1238

1239
    .. math::
D
dengkaipeng 已提交
1240 1241 1242 1243 1244 1245

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
1246
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
1247 1248 1249 1250

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
1251

D
dengkaipeng 已提交
1252
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
1253

1254

D
dengkaipeng 已提交
1255 1256 1257
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
1258
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
1259 1260 1261
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
1262 1263 1264
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
1265 1266

    Returns:
C
Chen Long 已提交
1267
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
1268
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
1269 1270

    Examples:
K
Kaipeng Deng 已提交
1271
       .. code-block:: python
D
dengkaipeng 已提交
1272

1273
            import paddle
K
Kaipeng Deng 已提交
1274

1275
            paddle.enable_static()
C
Chen Long 已提交
1276
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
1277
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
1278
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
1279 1280
    """
    helper = LayerHelper('spectral_norm', **locals())
1281 1282 1283
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
1284 1285 1286
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
1287
    dtype = weight.dtype
D
dengkaipeng 已提交
1288 1289

    # create intput and parameters
1290
    input_shape = weight.shape
1291
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
1292 1293 1294 1295 1296
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
1297 1298 1299
    h = input_shape[dim]
    w = np.prod(input_shape) // h

1300 1301 1302 1303 1304 1305
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
1306
    u.stop_gradient = True
1307 1308 1309 1310 1311 1312
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
1313
    v.stop_gradient = True
D
dengkaipeng 已提交
1314

1315 1316 1317 1318 1319 1320 1321
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
1322
    # create output
1323
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
1324

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
1337

1338
    return out
D
Dun 已提交
1339 1340


C
caoying03 已提交
1341
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1342
    """
1343

Y
yangyaming 已提交
1344
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
1345 1346

    Args:
1347 1348 1349
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
1350 1351
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
1352 1353
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
1354
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
1355
            output Tensor. The result tensor will have one fewer dimension
1356 1357 1358 1359
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
1360 1361

    Returns:
1362 1363
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
1364

1365 1366
    Raises:
        TypeError, if out data type is different with the input data type.
1367

G
guosheng 已提交
1368 1369 1370
    Examples:
        .. code-block:: python

1371
            import paddle.fluid as fluid
1372 1373
            import paddle
            paddle.enable_static()
G
guosheng 已提交
1374 1375 1376
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
1377
            # Each example is followed by the corresponding output tensor.
1378
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
1379 1380 1381 1382
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
1383

1384
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
1385 1386
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
1387
            # Each example is followed by the corresponding output tensor.
1388
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
1389 1390
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
1391

G
guosheng 已提交
1392
    """
1393 1394
    reduce_all, dim = _get_reduce_dim(dim, input)

1395
    if in_dygraph_mode():
1396
        return _C_ops.sum(input, dim, None, keep_dim)
1397
    elif _in_legacy_dygraph():
1398 1399 1400
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
1401
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
1402
    check_variable_and_dtype(
1403 1404 1405 1406 1407
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
1408
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
1409
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
1410 1411 1412 1413 1414 1415
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
1416
    return out
G
guosheng 已提交
1417 1418


Y
yuyang18 已提交
1419
@templatedoc()
1420
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
1421
    """
1422 1423
    :api_attr: Static Graph

Y
yuyang18 已提交
1424
    ${comment}
1425 1426

    Args:
Y
yuyang18 已提交
1427
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
1428 1429
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
1430 1431 1432 1433 1434
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
1435
        ${out_comment}.
1436 1437

    Examples:
B
Bai Yifan 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
1450 1451
    """
    helper = LayerHelper('row_conv', **locals())
1452
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
1453
    dtype = helper.input_dtype()
1454
    filter_shape = [future_context_size + 1, input.shape[-1]]
1455 1456 1457
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
1458
    out = helper.create_variable_for_type_inference(dtype)
1459 1460 1461 1462 1463
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
1464
    return helper.append_activation(out)
1465 1466


1467
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
1468
def one_hot(input, depth, allow_out_of_range=False):
1469
    """
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
1508
                        [0., 1., 0., 0.],
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
1521
            The second dimension in X is 5, which is greater than depth.
1522 1523
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
1524 1525

    Args:
1526 1527 1528
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
1529
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
1530
            is word id, depth is generally the dictionary size.
1531
        allow_out_of_range(bool): A bool value indicating whether the input
1532 1533 1534 1535
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
1536 1537

    Returns:
1538
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
1539 1540

    Examples:
C
caoying03 已提交
1541
        .. code-block:: python
1542

1543
            import paddle
1544
            import paddle.fluid as fluid
1545 1546
            paddle.enable_static()

1547 1548 1549
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
1550
    """
J
Jiabin Yang 已提交
1551
    if _non_static_mode():
S
songyouwei 已提交
1552 1553 1554
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
1555 1556
                1,
            ), "depth of type Variable should have shape [1]"
1557
            depth = depth.item(0)
1558 1559 1560
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
1561 1562
        out.stop_gradient = True
        return out
1563

1564
    helper = LayerHelper("one_hot", **locals())
1565
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
1566
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
1567
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
1568

1569 1570
    if not isinstance(depth, Variable):
        # user attribute
1571
        inputs = {'X': input}
Y
Yi Liu 已提交
1572
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
1573
    else:
1574 1575 1576
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
1577 1578 1579
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
1580
    one_hot_out.stop_gradient = True
1581
    return one_hot_out
Y
Yu Yang 已提交
1582 1583


Y
Yu Yang 已提交
1584
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
1585
    """
1586 1587
    :api_attr: Static Graph

1588 1589
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
1590
    and the step size is 1.
Y
Yu Yang 已提交
1591 1592

    Args:
Y
Yibing Liu 已提交
1593 1594 1595
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
1596

1597
    Returns:
Y
Yibing Liu 已提交
1598
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
1599 1600 1601 1602

    Examples:
        .. code-block:: python

1603
           import paddle.fluid as fluid
1604 1605
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
1606
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
1607
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
1608 1609
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
1610 1611
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
1612
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
1613 1614 1615 1616
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
1617 1618
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
1619
    if is_new_var:
1620 1621 1622
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
1623
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
1624 1625
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
1626
            outputs={'Out': [counter]},
1627 1628
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
1629 1630 1631
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
1632 1633


1634
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
1635
    """
1636
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
1637 1638
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
1639

M
minqiyang 已提交
1640
    For example:
H
haowang101779990 已提交
1641 1642 1643

    .. code-block:: text

M
minqiyang 已提交
1644
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
1645
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
1646

Y
Yibing Liu 已提交
1647
    Args:
1648
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
1649
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
1650
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
1651 1652

    Returns:
1653
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
1654 1655 1656 1657

    Examples:
        .. code-block:: python

1658 1659 1660
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
1661

Y
Yibing Liu 已提交
1662
    """
J
Jiabin Yang 已提交
1663
    if _non_static_mode():
L
Leo Chen 已提交
1664 1665 1666
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
1667
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
1668 1669 1670 1671 1672
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
1673
        if _in_legacy_dygraph():
1674
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
1675
            return out
1676
        return _C_ops.unsqueeze(input, axes)
1677 1678

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
1706
        if utils._contain_var(axes):
1707
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
1708 1709 1710
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
1711 1712
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
1713 1714 1715 1716 1717 1718
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
1719

1720 1721
    return out

1722

Y
yangyaming 已提交
1723
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
1724
    """
Y
Yibing Liu 已提交
1725
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
1726 1727 1728 1729
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
1730
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
1731 1732 1733 1734 1735 1736

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
1737
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
1738 1739 1740
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

1741
            target_lod: [4, 2]
Y
yangyaming 已提交
1742 1743

            then we get a 1-level LoDTensor:
1744
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
1745 1746 1747 1748 1749 1750
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
1751
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
1752 1753 1754 1755
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
1756
                y.data = [[2, 4]]
Y
yangyaming 已提交
1757 1758 1759
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
1760
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
1761 1762 1763 1764 1765 1766
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
1767
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
1768 1769 1770 1771
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
1772
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
1773 1774 1775 1776
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
1777
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
1778 1779 1780 1781
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
1782
        x (Variable): Input variable which could be a Tensor or LoDTensor.
1783
                      The data type should be int32, int64, float32 or float64.
1784 1785
        y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
                                If y's lod level>0, the data type can be any type.
1786 1787
                                If y's lod level=0, the data type should be int32.
        target_lod (list|tuple, optional): One level LoD which should be considered
Y
Yibing Liu 已提交
1788
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
1789 1790

    Returns:
Y
Yibing Liu 已提交
1791
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
1792 1793

    Raises:
Y
Yibing Liu 已提交
1794
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
1795 1796 1797 1798

    Examples:
        .. code-block:: python

1799
            import paddle.fluid as fluid
1800 1801 1802
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
1803
    """
1804 1805 1806
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset'
    )
Y
yangyaming 已提交
1807
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
1808
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
1809
    if y is not None:
1810
        check_type(y, 'y', (Variable), 'lod_reset')
1811 1812 1813 1814
        # TODO: check y.lod_level = 0 dtype
        helper.append_op(
            type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
Y
yangyaming 已提交
1815
    elif target_lod is not None:
1816 1817 1818 1819 1820 1821
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out},
        )
Y
yangyaming 已提交
1822
    else:
1823 1824 1825 1826
        raise ValueError("y and target_lod should not be both none.")
    return out


1827
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
1828
    if _non_static_mode():
1829
        op = getattr(_legacy_C_ops, op_name)
1830 1831 1832 1833
        if binary_op:
            return op(x, y)
        else:
            return op(x)
1834
    check_variable_and_dtype(
1835 1836
        x,
        "x",
1837
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
1838 1839
        op_name,
    )
1840
    if y is not None:
1841
        check_variable_and_dtype(
1842 1843
            y,
            "y",
1844
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
1845 1846
            op_name,
        )
1847
    if out is not None:
1848
        check_type(out, "out", Variable, op_name)
1849

M
minqiyang 已提交
1850 1851
    helper = LayerHelper(op_name, **locals())

1852 1853 1854
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
1855 1856
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
1857 1858

    if out is None:
1859
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
1860 1861

    if binary_op:
1862 1863 1864
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
1865 1866 1867 1868 1869 1870
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


1871 1872 1873
@templatedoc()
def clip(x, min, max, name=None):
    """
1874
        :old_api: paddle.fluid.layers.clip
1875

1876 1877 1878 1879
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
1880 1881
        min(float): ${min_comment}
        max(float): ${max_comment}
1882 1883
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
1884
                             For more information, please refer to :ref:`api_guide_Name`
1885 1886

    Returns:
S
SunGaofeng 已提交
1887 1888 1889 1890
        ${out_comment}

    Return Type:
        ${out_type}
1891 1892 1893 1894

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
1895
            import paddle.fluid as fluid
S
SunGaofeng 已提交
1896
            input = fluid.data(
1897 1898
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
1899 1900 1901
    """

    helper = LayerHelper("clip", **locals())
1902
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
1903 1904

    if name is None:
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
1931 1932 1933
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
1934 1935

    Returns:
1936
        Tensor:
W
wangguanzhong 已提交
1937

1938
        out(${out_type}): ${out_comment}
1939

W
wangguanzhong 已提交
1940

1941 1942 1943
    Examples:
        .. code-block:: python

1944
            import paddle
1945
            import paddle.fluid as fluid
1946

1947 1948 1949
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
1950 1951
    """

L
lyq 已提交
1952
    if in_dygraph_mode():
1953
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
1954
    if _non_static_mode():
1955
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
1956

1957
    helper = LayerHelper("clip_by_norm", **locals())
1958
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
1959
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
1960 1961

    if name is None:
1962 1963 1964
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
1965

1966 1967 1968
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
1969

1970 1971 1972 1973 1974 1975
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
1976 1977

    return out
X
Xin Pan 已提交
1978 1979


C
chengduo 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
1991 1992 1993 1994

    Examples:
        .. code-block:: python

1995
            import paddle.fluid as fluid
1996 1997 1998 1999 2000
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
2001
    """
2002 2003 2004
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

2005
    if _non_static_mode():
2006
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
2007 2008 2009

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2010 2011 2012 2013 2014 2015
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
2016 2017 2018
    return out


X
Xin Pan 已提交
2019 2020
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
2021 2022 2023 2024 2025 2026 2027 2028
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
2029 2030

    Args:
L
liu zhengxi 已提交
2031 2032
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
2033 2034 2035
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1.
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
X
Xin Pan 已提交
2036 2037

    Returns:
L
liu zhengxi 已提交
2038
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
2039 2040

    Examples:
L
liu zhengxi 已提交
2041
        ..  code-block:: python
2042

2043
            import paddle.fluid as fluid
2044 2045
            import paddle
            paddle.enable_static()
2046 2047 2048 2049 2050
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
2051

2052

X
Xin Pan 已提交
2053
    """
J
Jiabin Yang 已提交
2054
    if _non_static_mode():
2055 2056 2057 2058 2059 2060 2061 2062
        return _legacy_C_ops.mul(
            x,
            y,
            'x_num_col_dims',
            x_num_col_dims,
            'y_num_col_dims',
            y_num_col_dims,
        )
X
Xin Pan 已提交
2063

2064 2065
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
2066
    helper = LayerHelper("mul", **locals())
2067 2068
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
2069
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
2070

2071 2072 2073
    helper.append_op(
        type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}
    )
X
Xin Pan 已提交
2074 2075 2076
    return out


C
chengduo 已提交
2077 2078 2079
@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
2080 2081 2082 2083 2084 2085 2086 2087 2088
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

2089
        Output is LoDTensor:
2090 2091 2092 2093 2094 2095
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
2096 2097

    Args:
2098 2099 2100
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
2101 2102

    Returns:
2103
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
2104 2105 2106

    Examples:
        .. code-block:: python
2107

B
bdzhuxiaoning 已提交
2108 2109 2110 2111
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
2112 2113
    """

2114 2115 2116 2117 2118
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
2119 2120
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2121 2122 2123 2124 2125 2126
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
2127
    return out