varbase_patch_methods.py 38.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19
import sys
20 21

import paddle
22
from .. import framework
23
from ..framework import convert_np_dtype_to_dtype_, _in_legacy_dygraph
24
from .. import core
25
from .. import unique_name
C
chentianyu03 已提交
26
from ..framework import Variable, Parameter, ParamBase, _getitem_impl_, _setitem_impl_, EagerParamBase, in_dygraph_mode
27
from .base import switch_to_static_graph
28
from .math_op_patch import monkey_patch_math_varbase
29
from .parallel import scale_loss
L
Leo Chen 已提交
30
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
31
import paddle.utils.deprecated as deprecated
C
chenjian 已提交
32
import paddle.profiler as profiler
33
from paddle.profiler.utils import in_profiler_mode
34
from paddle import _C_ops, _legacy_C_ops
35

36 37
_grad_scalar = None

38

39 40 41
class TensorHookRemoveHelper(object):
    """
    A helper class that for removing Tensor gradient's hook.
42
    NOTE(wuweilong):the operation weakref.ref(tensor) will cause some unexpected errors in eager mode.
43 44 45
    """

    def __init__(self, tensor, hook_id):
J
Jiabin Yang 已提交
46 47
        self._tensor = tensor if framework._in_eager_mode_ else weakref.ref(
            tensor)
48 49 50 51 52 53 54 55 56
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
J
Jiabin Yang 已提交
57
        tensor = self._tensor if framework._in_eager_mode_ else self._tensor()
58 59 60 61 62 63 64 65 66 67 68
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
                    % (self._hook_id, tensor.name), RuntimeWarning)
        return False


69 70 71
_already_patch_repr = False


72
def monkey_patch_varbase():
73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
101

102
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
103
        # It will fail. So, for propery that different between dynamic and static graph, should not getattr(self, attr, None).
104
        attr_not_need_keys = ['grad', 'T', 'place', '_place_str']
105
        param_keys = ['stop_gradient', 'trainable']
J
Jiabin Yang 已提交
106
        if isinstance(self, (ParamBase, EagerParamBase)):
107
            attr_kwargs = self.__dict__.copy()
108 109
            for key in param_keys:
                attr_kwargs[key] = getattr(self, key)
110
        else:
111 112
            attr_names = []
            for name in dir(self):
113 114 115 116
                if name not in attr_not_need_keys:
                    if not inspect.ismethod(getattr(
                            self, name)) and not name.startswith('_'):
                        attr_names.append(name)
117 118 119 120 121 122
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

123 124 125 126
        # If specify block, use it instead of self.block
        if 'block' in kwargs:
            attr_kwargs['block'] = kwargs['block']

127 128
        attr_kwargs.update(kwargs)

J
Jiabin Yang 已提交
129
        if to_parameter or isinstance(self, (ParamBase, EagerParamBase)):
130
            del attr_kwargs['persistable']
131 132
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
133 134 135 136 137
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

138 139 140 141 142
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
143
            **This API is ONLY available in Dygraph mode**
144 145 146 147 148 149 150 151 152 153 154

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
155
                from paddle.fluid.dygraph import Linear
156 157
                import numpy as np

158
                data = np.ones([3, 1024], dtype='float32')
159
                with fluid.dygraph.guard():
160
                    linear = fluid.dygraph.Linear(1024, 4)
161
                    t = to_variable(data)
162
                    linear(t)  # call with default weight
163
                    custom_weight = np.random.randn(1024, 4).astype("float32")
164 165
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
166 167

        """
J
Jiabin Yang 已提交
168
        if framework._in_eager_mode_:
169
            base_tensor = core.eager.Tensor
170 171 172
        else:
            base_tensor = core.VarBase
        assert isinstance(value, (np.ndarray, base_tensor, dict, str)), \
S
Steffy-zxf 已提交
173 174 175 176 177 178 179 180 181 182 183 184
            "Variable set_value function, arguments type only support Variable, numpy, VarBase, dict, string."

        if isinstance(value, (dict, str)):
            assert len(self) == len(
                value
            ), "Variable length not match, Variable [ {} ] need tensor with length {} but load set tensor with length {}".format(
                self.name, len(self), len(value))
            if isinstance(value, dict):
                self.value().set_vocab(value)
            else:
                self.value().set_string_list(value)
        else:
C
crystal 已提交
185
            assert self.shape == list(value.shape),  \
S
Steffy-zxf 已提交
186
                "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
C
crystal 已提交
187 188 189 190 191 192
                    self.name, self.shape, value.shape)

            if isinstance(value, base_tensor):
                dtype = value.dtype
            else:
                dtype = convert_np_dtype_to_dtype_(value.dtype)
193

C
crystal 已提交
194
            assert self.dtype == dtype, \
S
Steffy-zxf 已提交
195
                "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
C
crystal 已提交
196
                    self.name, self.dtype, dtype)
197

198
            # NOTE(wuweilong): self could be VarBase or Tensor, the subsequent behavior are defined in different files
199
            # if self is VarBase, method value() return Variable that bindded in imperative.cc, get_tensor() bindded in pybind.cc
200
            # if self is Tensor, method value() return self that defined in this file, get_tensor() defined in eager_method.cc
201
            # this Interface behavior will be unifed in the future.
C
crystal 已提交
202
            self.value().get_tensor().set(value,
S
Steffy-zxf 已提交
203
                                          framework._current_expected_place())
204 205

    @framework.dygraph_only
206
    def backward(self, grad_tensor=None, retain_graph=False):
207
        """
208
        Run backward of current Graph which starts from current Tensor.
209

210 211 212 213
        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

214
        Args:
C
chenjian 已提交
215 216
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None,
            the initial gradient values of the current Tensor would be Tensor filled with 1.0;
217 218 219
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
            Teh default value is None.

220
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
221 222 223
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
224 225 226 227 228 229
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

230
                import paddle
231 232 233 234 235 236 237 238 239 240 241 242 243 244
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
245

246 247 248 249 250 251 252 253 254 255 256
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

257
        """
J
Jiabin Yang 已提交
258
        if framework._non_static_mode():
259 260 261 262
            if in_profiler_mode():
                record_event = profiler.RecordEvent(
                    "Gradient Backward", profiler.TracerEventType.Backward)
                record_event.begin()
263
            if grad_tensor is not None:
J
Jiabin Yang 已提交
264
                if framework._in_eager_mode_:
265
                    assert isinstance(
266 267
                        grad_tensor, core.eager.Tensor
                    ), "The type of grad_tensor must be paddle.Tensor"
268 269
                else:
                    assert isinstance(
270 271
                        grad_tensor, paddle.Tensor
                    ), "The type of grad_tensor must be paddle.Tensor"
272 273 274 275
                assert grad_tensor.shape == self.shape, \
                    "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape)

J
Jiabin Yang 已提交
276
            if framework._in_eager_mode_:
277 278 279 280
                if grad_tensor is None:
                    grad_tensor = []
                else:
                    grad_tensor = [grad_tensor]
281 282 283
            if _grad_scalar:
                # When using amp with Fleet DistributedStrategy, we do loss scaling implicitly.
                self = _grad_scalar.scale(self)
284 285
            if paddle.is_compiled_with_xpu() or paddle.is_compiled_with_npu(
            ) or paddle.is_compiled_with_mlu():
286
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
287
                scaled_loss = scale_loss(self)
J
Jiabin Yang 已提交
288
                if framework._in_eager_mode_:
289 290 291 292 293 294
                    core.eager.run_backward([scaled_loss], grad_tensor,
                                            retain_graph)
                else:
                    core.dygraph_run_backward([scaled_loss], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
295
            else:
J
Jiabin Yang 已提交
296
                if framework._in_eager_mode_:
297 298 299 300 301
                    core.eager.run_backward([self], grad_tensor, retain_graph)
                else:
                    core.dygraph_run_backward([self], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
302 303
            if in_profiler_mode():
                record_event.end()
304 305
        else:
            raise ValueError(
T
tianshuo78520a 已提交
306
                "Variable.backward() is only available in DyGraph mode")
307 308

    @framework.dygraph_only
309 310
    @deprecated(
        since="2.1.0",
311
        level=1,
312 313
        reason=
        "Please use tensor.grad, which returns the tensor value of the gradient."
314
    )
315 316
    def gradient(self):
        """
317 318 319 320
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

321
        Get the Gradient of Current Tensor.
322 323

        Returns:
324
            ndarray: Numpy value of the gradient of current Tensor
325 326 327 328

        Examples:
            .. code-block:: python

329
                import paddle
330

331 332 333
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
334
                print("grad of x: {}".format(x.gradient()))
335
                # [500.]
336 337

        """
J
Jiabin Yang 已提交
338
        if framework._in_eager_mode_:
339
            if self.grad is None:
340
                return None
341 342
            if self.grad.is_selected_rows():
                return (np.array(self.grad.numpy()), np.array(self.grad.rows()))
343 344 345 346
            return self.grad.numpy()
        else:
            if self._grad_ivar() is None:
                return None
347

348 349
            new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
            if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
350 351 352
                return (np.array(
                    new_ivar.value().get_selected_rows().get_tensor()),
                        np.array(new_ivar.value().get_selected_rows().rows()))
353 354
            else:
                return np.array(new_ivar.value().get_tensor())
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
                "Cannot register hook on a tensor that stop gradient.")

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

423 424 425 426 427 428 429 430 431
    @framework.dygraph_only
    def _to(self, device=None, dtype=None, blocking=None):

        if device is None and dtype is None and blocking is None:
            return self

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
432 433 434 435
            elif isinstance(
                    device,
                (core.CPUPlace, core.CUDAPlace, core.CUDAPinnedPlace,
                 core.XPUPlace, core.CustomPlace)):
436 437 438
                pass
            else:
                raise ValueError(
439
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace(), paddle.XPUPlace() or paddle.CustomPlace(), but the type of device is "
440 441 442 443 444 445 446 447 448 449 450 451 452 453
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype
454 455
            if type(dtype) is str:
                dtype = framework.convert_np_dtype_to_dtype_(dtype)
456 457 458

            # 1. gpu place need to determine whether the memory is sufficient for allocation.
            if t.place.is_gpu_place():
459
                size_dtype = core.size_of_dtype(dtype)
460 461 462 463 464
                # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
                # waiting_alloc_memory will compute the memory space occupied by 't'.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
                    (t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
465
                gpu_memory_available = core.gpu_memory_available()
466 467 468 469 470 471 472 473 474 475 476 477 478
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(), blocking)
                    # Release memory of t
                    t._clear()
                else:
                    # Tensor still in GPU
                    t_used = t
            else:
                t_used = t

            # 2. cast Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
479 480 481
                with paddle.fluid.framework._dygraph_place_guard(
                        place=t_used.place):
                    t_casted = t_used.cast(dtype=dtype)
482 483 484 485
            else:
                t_casted = t_used

            # 3. Copy casted Tensor(in CPU or GPU) to device
486 487 488 489
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
490 491 492 493 494 495 496 497 498 499 500 501

            # 4. Share Tensor to origin Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            return transform(self, device, dtype, blocking)

502 503 504
    @property
    def grad(self):
        """
505
        .. warning::
C
chenjian 已提交
506
          This API will return the tensor value of the gradient. If you want
507 508 509 510 511 512 513 514 515 516 517
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
518

519 520 521 522 523 524 525
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])

        """
526 527 528 529
        msg = 'tensor.grad will return the tensor value of the gradient.' \
            ' This is an incompatible upgrade for tensor.grad API. ' \
            ' It\'s return type changes from numpy.ndarray in version 2.0 to paddle.Tensor in version 2.1.0. ' \
            ' If you want to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`'
530
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
531 532 533
        # ensure ANSI escape sequences print correctly in cmd and powershell
        if sys.platform.lower() == 'win32':
            warning_msg = "\nWarning:\n%s " % (msg)
534
        warnings.warn(warning_msg)
535
        return self._grad_ivar()
536

537 538 539 540 541 542
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

543 544
    def item(self, *args):
        """
C
chenjian 已提交
545
        Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a
546
        single-element Tensor.
547 548 549 550 551 552 553 554 555

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
C
chenjian 已提交
556

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

        """
        return self._getitem_from_offset(*args).item()

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

606 607
    def __str__(self):
        """
608
        Convert a VarBase object to a readable string.
609

610
        Returns(str): A readable string.
611 612 613 614

        Examples:
            .. code-block:: python

615
                import paddle
616
                x = paddle.rand([2, 5])
617
                print(x)
C
chenjian 已提交
618

619 620 621
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
622
        """
J
Jiabin Yang 已提交
623
        if framework._in_eager_mode_:
624 625
            from paddle.tensor.to_string import tensor_to_string
            return tensor_to_string(self)
626 627 628
        else:
            from paddle.tensor.to_string import to_string
            return to_string(self)
629

630 631 632 633 634 635 636 637 638 639 640
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
C
chenjian 已提交
641

642 643 644 645 646 647 648 649 650 651 652 653 654
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
J
Jiabin Yang 已提交
655
        if framework._in_eager_mode_:
656
            new_varbase = core.eager.Tensor()
657 658
        else:
            new_varbase = core.VarBase()
659 660 661 662 663
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

664 665 666
    @property
    def block(self):
        return framework.default_main_program().global_block()
667

668 669 670
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
J
Jiabin Yang 已提交
671
        if framework._in_eager_mode_:
672 673 674 675 676 677
            assert self._is_initialized(), "tensor not initialized"
            return bool(np.all(self.numpy() > 0))
        else:
            tensor = self.value().get_tensor()
            assert tensor._is_initialized(), "tensor not initialized"
            return bool(np.all(tensor.__array__() > 0))
678 679 680 681

    def __bool__(self):
        return self.__nonzero__()

682
    def __array__(self, dtype=None):
683 684
        """
        Returns a numpy array shows the value of current Tensor.
C
chenjian 已提交
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
        array = self.numpy()
        if dtype:
            array = array.astype(dtype)
        return array
707

W
WeiXin 已提交
708
    def contain_tensor(item):
709
        if not isinstance(item, (tuple, list)):
W
WeiXin 已提交
710 711 712 713 714 715 716 717 718
            item = [item]

        for slice_item in item:
            if isinstance(slice_item, slice):
                if isinstance(slice_item.start, Variable)  \
                    or isinstance(slice_item.stop, Variable) \
                        or isinstance(slice_item.step, Variable):
                    return True
            else:
W
WeiXin 已提交
719 720 721
                if isinstance(
                        slice_item,
                    (Variable, np.ndarray)) and Variable.dtype != paddle.bool:
W
WeiXin 已提交
722 723 724
                    return True
        return False

725
    def __getitem__(self, item):
726

W
WeiXin 已提交
727
        def is_list_tuple(index, contain_type):
728

W
WeiXin 已提交
729 730 731 732 733
            def _is_list_tuple(item):
                if isinstance(item, (tuple, list)):
                    for s in item:
                        if not _is_list_tuple(s):
                            return False
734 735 736
                else:
                    if type(item) != contain_type:
                        return False
W
WeiXin 已提交
737
                return True
738

W
WeiXin 已提交
739 740 741 742 743 744 745 746
            if not isinstance(index, (tuple, list)):
                return False
            for s in index:
                if not _is_list_tuple(s):
                    return False
            return True

        if contain_tensor(item) or is_list_tuple(item, int):
747 748 749 750 751 752 753 754
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

W
WeiXin 已提交
755
    def __setitem__(self, item, value):
756

Z
zyfncg 已提交
757 758 759
        def contain_tensor_or_list(item):
            if not isinstance(item, tuple):
                item = [item]
W
WeiXin 已提交
760

Z
zyfncg 已提交
761 762 763 764 765 766 767 768
            for slice_item in item:
                if isinstance(slice_item, list):
                    return True
                elif isinstance(slice_item, Variable):
                    return True

            return False

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
        def is_combine_index(item):
            var_type = None
            item_type = None
            if isinstance(item, (tuple, list)):
                for slice_item in item:
                    if item_type is None:
                        item_type = type(slice_item)
                    else:
                        if type(slice_item) != item_type:
                            return True

                    if isinstance(slice_item, Variable):
                        if var_type is None:
                            var_type = slice_item.dtype
                        else:
                            if var_type != slice_item.dtype:
                                return True
                return False

            return False

        if contain_tensor_or_list(item) and not is_combine_index(item):
Z
zyfncg 已提交
791 792
            # To reuse code with static graph,
            # Call _setitem_impl_ when item contains tensor or list.
W
WeiXin 已提交
793 794 795
            return _setitem_impl_(self, item, value)

        else:
J
Jiabin Yang 已提交
796
            if framework._in_eager_mode_:
W
wanghuancoder 已提交
797 798 799 800
                return self.__setitem_eager_tensor__(item, value)
            else:
                # Call c++ func __setitem_varbase__ to speedup.
                return self.__setitem_varbase__(item, value)
W
WeiXin 已提交
801

802 803
    @framework.dygraph_only
    def _grad_ivar(self):
804 805 806 807
        if self.grad is not None:
            if self.grad._is_initialized():
                return self.grad
        return None
808

809 810 811 812
    @framework.dygraph_only
    def _set_grad_ivar(self, value):
        if isinstance(self, EagerParamBase):
            self.grad = value
813
            self._unset_fake_empty()
814 815 816 817
        else:
            raise TypeError(
                "_set_grad_ivar is only supported for Parameter Tensor")

818 819 820 821
    @framework.dygraph_only
    def value(self):
        return self

J
Jiabin Yang 已提交
822 823 824 825 826 827 828 829
    @framework.dygraph_only
    def _slice(self, begin_idx, end_idx):
        return core.eager.Tensor(self.get_tensor()._slice(begin_idx, end_idx))

    @framework.dygraph_only
    def _numel(self):
        return self.get_tensor()._numel()

B
Baibaifan 已提交
830 831 832 833
    @framework.dygraph_only
    def _clear_data(self):
        self.get_tensor()._clear()

834 835
    @framework.dygraph_only
    def _uva(self, device_id=0):
W
Weilong Wu 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
        '''
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
        '''
851 852
        self._tensor_uva(device_id)

J
Jiabin Yang 已提交
853 854 855 856 857 858 859 860 861 862 863
    @framework.dygraph_only
    def cpu(self):
        if self.place.is_cpu_place():
            return self
        else:
            res = self._copy_to(core.CPUPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

    @framework.dygraph_only
864
    def cuda(self, device_id=None, blocking=True):
865
        if device_id is None:
866 867 868 869 870 871 872 873 874
            res_place = framework._current_expected_place()
            if not isinstance(res_place, core.CUDAPlace):
                res_place = core.CUDAPlace(0)
        elif isinstance(device_id, int):
            res_place = core.CUDAPlace(device_id)
        else:
            raise ValueError("device_id must be int|None")

        if self.place._equals(res_place):
J
Jiabin Yang 已提交
875 876
            return self
        else:
877
            res = self._copy_to(res_place, True)
J
Jiabin Yang 已提交
878 879 880 881
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

W
wanghuancoder 已提交
882 883 884 885 886 887 888 889 890 891
    @framework.dygraph_only
    def pin_memory(self):
        if self.place.is_cuda_pinned_place():
            return self
        else:
            res = self._copy_to(core.CUDAPinnedPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

892 893
    @framework.dygraph_only
    def values(self):
Z
zhangkaihuo 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Get the values of current SparseTensor(COO or CSR).

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
                from paddle.fluid.framework import _test_eager_guard
                with _test_eager_guard():
                    indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                    values = [1, 2, 3, 4, 5]
                    dense_shape = [3, 4]
911
                    sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int32'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
Z
zhangkaihuo 已提交
912 913 914
                    print(sparse_x.values())
                    #[1, 2, 3, 4, 5]
        """
915
        return _C_ops.sparse_values(self)
916 917 918

    @framework.dygraph_only
    def to_dense(self):
Z
zhangkaihuo 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current SparseTensor(COO or CSR) to DenseTensor.

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
                from paddle.fluid.framework import _test_eager_guard
                with _test_eager_guard():
                    indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                    values = [1, 2, 3, 4, 5]
                    dense_shape = [3, 4]
936
                    sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int64'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
Z
zhangkaihuo 已提交
937 938 939 940 941 942
                    dense_x = sparse_x.to_dense()
                    #[[0., 1., 0., 2.],
                    # [0., 0., 3., 0.],
                    # [4., 5., 0., 0.]]
        """

943
        return _C_ops.sparse_to_dense(self)
944 945 946

    @framework.dygraph_only
    def to_sparse_coo(self, sparse_dim):
Z
zhangkaihuo 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current DenseTensor to SparseTensor in COO format.

        Returns:
            Tensor: A SparseCooTensor

        Examples:
            .. code-block:: python

                import paddle
                from paddle.fluid.framework import _test_eager_guard
                with _test_eager_guard():
                    dense_x = [[0, 1, 0, 2], [0, 0, 3, 4]]
                    dense_x = paddle.to_tensor(dense_x, dtype='float32')
                    sparse_x = dense_x.to_sparse_coo(sparse_dim=2)
                    #indices=[[0, 0, 1, 1],
                    #         [1, 3, 2, 3]],
                    #values=[1., 2., 3., 4.]
        """

969
        return _C_ops.sparse_to_sparse_coo(self, sparse_dim)
970

J
Jiabin Yang 已提交
971
    if framework._in_eager_mode_ and not hasattr(core, "eager"):
972 973
        return

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    for method_name, method in (("__bool__", __bool__), ("__nonzero__",
                                                         __nonzero__),
                                ("_to_static_var",
                                 _to_static_var), ("set_value", set_value),
                                ("block", block), ("backward", backward),
                                ("clear_grad", clear_grad), ("inplace_version",
                                                             inplace_version),
                                ("gradient", gradient), ("register_hook",
                                                         register_hook),
                                ("__str__", __str__), ("__repr__", __str__),
                                ("__deepcopy__", __deepcopy__), ("__module__",
                                                                 "paddle"),
                                ("__array__",
                                 __array__), ("__getitem__",
                                              __getitem__), ("item", item),
                                ("__setitem__",
                                 __setitem__), ("_to", _to), ("values", values),
                                ("to_dense", to_dense), ("to_sparse_coo",
                                                         to_sparse_coo)):
J
Jiabin Yang 已提交
993
        if framework._in_eager_mode_:
994
            setattr(core.eager.Tensor, method_name, method)
L
Leo Chen 已提交
995
        else:
996 997
            setattr(core.VarBase, method_name, method)

J
Jiabin Yang 已提交
998
    if framework._in_eager_mode_:
999 1000 1001
        setattr(core.eager.Tensor, "_grad_ivar", _grad_ivar)
        setattr(core.eager.Tensor, "_set_grad_ivar", _set_grad_ivar)
        setattr(core.eager.Tensor, "value", value)
J
Jiabin Yang 已提交
1002 1003
        setattr(core.eager.Tensor, "cpu", cpu)
        setattr(core.eager.Tensor, "cuda", cuda)
W
wanghuancoder 已提交
1004
        setattr(core.eager.Tensor, "pin_memory", pin_memory)
J
Jiabin Yang 已提交
1005 1006
        setattr(core.eager.Tensor, "_slice", _slice)
        setattr(core.eager.Tensor, "_numel", _numel)
1007
        setattr(core.eager.Tensor, "_uva", _uva)
B
Baibaifan 已提交
1008
        setattr(core.eager.Tensor, "_clear_data", _clear_data)
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    else:
        setattr(core.VarBase, "__name__", "Tensor")
        setattr(core.VarBase, "grad", grad)

    global _already_patch_repr
    if not _already_patch_repr:
        # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
        # So, we need to overwrite it to a more readable one.
        # See details in https://github.com/pybind/pybind11/issues/2537.
        origin = getattr(core.VarDesc.VarType, "__repr__")

        def dtype_str(dtype):
            if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
1022 1023 1024
                numpy_dtype = _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
                if numpy_dtype == 'uint16':
                    numpy_dtype = 'bfloat16'
1025
                prefix = 'paddle.'
1026
                return prefix + numpy_dtype
1027 1028 1029
            else:
                # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
                return origin(dtype)
L
Leo Chen 已提交
1030

1031 1032
        setattr(core.VarDesc.VarType, "__repr__", dtype_str)
        _already_patch_repr = True
L
Leo Chen 已提交
1033

1034 1035
    # patch math methods for varbase
    monkey_patch_math_varbase()