engine.py 70.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import json
17
import logging
18
import numbers
19 20
import os
import random
21

22 23
import numpy as np

24
import paddle
25
import paddle.distributed.auto_parallel.utils as auto_utils
26
from paddle import static, utils
27
from paddle.distributed import fleet
28 29 30
from paddle.fluid.executor import _to_name_str
from paddle.framework import IrGraph
from paddle.framework import _current_expected_place as _get_device
31
from paddle.framework import core, in_dynamic_mode
32
from paddle.metric import Metric
33
from paddle.static import InputSpec, Operator, Variable, global_scope
34

35
from ..utils.log_utils import get_logger
Z
zhaoyingli 已提交
36
from .callbacks import config_callbacks
37
from .cluster import Cluster, get_default_cluster
38 39 40
from .converter import Converter
from .cost.estimate_cost import get_cost_from_engine
from .dist_context import DistributedContext, get_default_distributed_context
41 42
from .dist_loader import (
    DistributedDataLoader,
43
    DistributedDataLoaderFromGenerator,
44
)
45 46 47
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .helper import ProgramHelper
48
from .interface import CollectionNames, fetch, get_collection
49 50 51 52
from .parallelizer_v2 import Parallelizer
from .planner_v2 import Planner
from .process_group import get_all_process_groups, new_process_group
from .strategy import Strategy
53

54 55

class Engine:
56
    """
57 58
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
59 60 61 62 63 64 65
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
66 67
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
84
            from paddle.distributed.fleet import auto
85 86 87 88 89 90 91 92 93 94
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
95
            loss = paddle.nn.CrossEntropyLoss()
96 97 98 99
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

100 101
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
102 103 104
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
105
            # evaluate
106 107 108 109 110 111 112
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
113
            # load
114 115 116
            engine.load("./my_model")

    """
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
133 134 135 136
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
137 138 139 140 141 142 143 144 145

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
146 147 148
        self._loss = loss

        if optimizer and not isinstance(
149
            optimizer,
150
            (paddle.optimizer.Optimizer, paddle.static.Optimizer),
151
        ):
152 153
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
154
                " or `paddle.static.Optimizer`."
155
            )
156
        self._optimizer = auto_utils.validate_opt(optimizer)
157 158

        metrics = metrics or []
159
        for metric in auto_utils.to_list(metrics):
160 161 162 163 164 165
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
166
        self._metrics = auto_utils.to_list(metrics)
167 168 169 170 171 172 173 174 175 176 177 178 179

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

180
        self._logger = get_logger(logging.INFO)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

        self._json_config = None
        if cluster:
            self._cluster = cluster
        else:
            if os.getenv("PADDLE_AUTO_PARALLEL_CONFIG"):
                try:
                    path = os.getenv("PADDLE_AUTO_PARALLEL_CONFIG")
                    with open(path, "r") as f:
                        self._json_config = json.load(f)
                except Exception as e:
                    self._logger.info(
                        "Load json failed, please check json file, engine will run default config."
                    )
                    self._json_config = None
            self._cluster = get_default_cluster(self._json_config)

198
        if os.getenv("POD_NAME"):
199 200
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
201
            )
202
            fleet.init(is_collective=True)
203

204 205 206 207 208 209
        # for compute cost
        # TODO: remove _fwd_main_progs and _orig_optimizer
        self._fwd_dist_contexts = {}
        self._fwd_main_progs = {}
        self._orig_optimizer = copy.deepcopy(self._optimizer)

210
        self._executor = None
211 212 213
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
214

215 216
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
217
        self._orig_dist_context = get_default_distributed_context()
218
        self._dist_contexts = {}
219
        self._planners = {}
220 221
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
222 223
            "train": False,
            "eval": False,
224
            "predict": False,
225
        }
226 227 228 229
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
230
        self._losses = []
231

232
        self._mode = None
233 234
        self._skip_build = False
        self._outside_dataloader = False
235
        self._planned_mode = None
236 237
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
238

Z
zhaoyingli 已提交
239 240
        self.history = None

241 242
        paddle.framework.set_flags({'FLAGS_new_executor_sequential_run': 1})

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
261
            raise TypeError(
C
chenxujun 已提交
262
                "Data should be a Dataset or IterableDataset, but received {}.".format(
263 264 265
                    type(data).__name__
                )
            )
266 267
        inputs = auto_utils.to_list(inputs)
        labels = auto_utils.to_list(labels)
268 269

        num_shards = self._strategy.dataset.num_shards
270

271 272 273 274 275 276 277 278 279 280 281 282
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
W
wanghuancoder 已提交
283
            elif isinstance(item, (Variable, core.eager.Tensor)):
284
                spec = InputSpec.from_tensor(item, name)
285
                _adjust_item_spec(num_shards, spec)
286 287 288 289
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
290
            elif isinstance(item, numbers.Number):
291
                specs.append(InputSpec([batch_size], type(item), name))
292 293 294 295 296 297
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

314
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
315
        if in_dynamic_mode() or self._dygraph_mode:
316 317
            raise ValueError("Only support static graph mode.")

318
        if inputs_spec:
319 320 321 322 323
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
324 325
            assert isinstance(
                inputs, list
326
            ), f"inputs should be list, but received {type(inputs)}"
327 328 329 330 331 332
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
333
        if labels_spec:
334 335 336 337 338
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
339 340
            assert isinstance(
                labels, list
341
            ), f"labels should be list, but received {type(labels)}"
342 343 344 345 346 347 348
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

349 350
        return inputs, labels

351
    def _prepare_reader(self, feed_list=[]):
352
        dist_context = self._dist_contexts[self._mode]
353
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
354 355 356 357
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
358 359 360
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
361 362 363 364 365 366 367 368 369 370 371 372 373
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
374 375
        # record the read ops' desc to insert to program of forward task_node
        read_ops_desc = []
376 377 378 379
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
380
            read_ops_desc.append(new_op_desc)
381 382 383
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
        # Insert read op to forward TaskNode if 1F1B pass is setted
        if self.main_program._pipeline_opt:
            assert "tasks" in self.main_program._pipeline_opt["fleet_opt"]
            fleet_opt = self.main_program._pipeline_opt["fleet_opt"]
            fwd_task = fleet_opt["tasks"][0]
            fwd_prog = fwd_task.get_program()
            fwd_block = fwd_prog.global_block()

            for var in feed_list:
                if var.name not in fwd_block.vars:
                    fwd_block._clone_variable(var)

            for op_desc in read_ops_desc:
                new_op_desc = fwd_block.desc._prepend_op()
                new_op_desc.copy_from(op_desc)
                new_op = Operator(
                    fwd_block, new_op_desc, type=new_op_desc.type()
                )
                fwd_block.ops.insert(0, new_op)

            fwd_block._sync_with_cpp()
            fwd_task.set_program(fwd_prog)

422 423 424 425 426
    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
427 428
                    for name, value in data[0].items():
                        feeds[name] = value
429
                else:
430
                    raise ValueError(f"Unsupported data {data}")
431
            elif isinstance(data, dict):
432 433
                for name, value in data.items():
                    feeds[name] = value
434
            else:
435
                raise ValueError(f"Unsupported data {data}")
436
        if user_feeds is not None:
437 438 439 440 441
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
442 443
            for name, data in user_feeds.items():
                feeds[name] = data
444 445
        return feeds

446
    def _prepare_fetch(self, user_fetches, mode):
447
        if user_fetches is not None:
448 449 450 451 452
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
453 454
        else:
            user_fetches = []
455
        fetch_names = []
456
        fetch_indices = []
457

458 459
        def _process_fetch_group(group_name, var_list):
            group_indices = []
460
            for var in var_list:
461 462 463 464 465 466
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
467 468
            if not group_indices:
                fetch_names.append([])
469 470
            fetch_indices.append(group_indices)

471 472
        dist_context = self._dist_contexts[mode]
        fetch_vars = dist_context.serial_fetch_vars
473
        if mode != "predict":
474
            _process_fetch_group("loss", fetch_vars["loss"])
475
        if mode != "predict":
476
            metrics = fetch_vars["metrics"]
477 478 479
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
480
            _process_fetch_group("outputs", fetch_vars["outputs"])
481 482 483
        for usr_fetch in user_fetches:
            var_name = _to_name_str(usr_fetch)
            fetch(var_name)
484 485 486
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
487
        var_list = user_fetches_collection or []
488 489 490
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

491 492 493 494 495 496 497 498 499 500
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
501
        logs = {}
502
        if epoch is not None:
Z
zhaoyingli 已提交
503
            logs["epoch"] = epoch
504
        if step is not None:
Z
zhaoyingli 已提交
505
            logs["step"] = step + 1
506
        if lr is not None:
Z
zhaoyingli 已提交
507
            logs["lr"] = lr
508 509
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
510
            # logging loss
511
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
512
            assert len(loss_indices) <= 1
513
            for idx in loss_indices:
514
                logs["loss"] = outs[idx]
515
            group_idx += 1
Z
zhaoyingli 已提交
516
            # logging metrics
517 518
            dist_context = self._dist_contexts[mode]
            metric_vars = dist_context.serial_fetch_vars["metrics"]
519 520 521 522 523 524 525 526 527
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
528
                        for i, res in enumerate(auto_utils.to_list(results)):
Z
zhaoyingli 已提交
529
                            logs[metric.name()[i]] = res
530
                    group_idx += 1
Z
zhaoyingli 已提交
531 532 533 534 535 536 537
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
538 539
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
540 541
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
542 543 544 545
        for name, var_name in collect_fetches:
            if var_name in fetch_names:
                idx = fetch_names.index(var_name)
                logs_fetch[name or var_name] = outs[idx]
Z
zhaoyingli 已提交
546 547
        logs["fetches"] = logs_fetch
        return logs
548

549
    def _prepare_program(self, mode, init_parameters=True):
550 551 552 553 554 555
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
556 557 558 559 560
        # Init comm
        self._init_comm()
        if init_parameters:
            # startup program
            self._initialize(mode)
561 562
        self._has_prepared[mode] = True

563
    def _build(self, mode):
564
        if in_dynamic_mode() or self._dygraph_mode:
565
            paddle.disable_static()
566 567 568
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

569
            self.program_helper = ProgramHelper(
570 571 572 573 574
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
575
            )
576
            # build forward main program
577 578
            with utils.unique_name.guard():
                self.program_helper.build_program(mode)
579

580 581 582
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
583

584 585
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
586
            outputs = self.program_helper.output_vars
587
            self._losses = self.program_helper.loss_vars
588
            metrics = self.program_helper.metric_vars
589

590
            paddle.enable_static()
591
        else:
592 593 594
            # build program in static mode
            dist_context = self._dist_contexts.get(mode, None)
            if dist_context is not None:
595 596
                return

597
            outputs = []
598
            metrics = []
599
            self._losses = []
600 601
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
602
            if not self._skip_build:
603 604 605
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
606 607 608 609 610 611 612
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

613
                    outputs = auto_utils.to_list(self._model(*self._inputs))
614

615
                    if mode != "predict" and self._loss:
616 617 618 619 620
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
621
                        self._losses = auto_utils.to_list(
622 623
                            self._loss(*(outputs + self._labels))
                        )
624

625
                    if mode != "predict" and (outputs or self._labels):
626 627
                        for metric in self._metrics:
                            metrics.append(
628
                                auto_utils.to_list(
629 630
                                    metric.compute(*(outputs + self._labels))
                                )
631
                            )
Z
zhaoyingli 已提交
632
            elif mode == "train":
633 634 635
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
636
                self._losses = auto_utils.to_list(self._loss)
637 638 639 640 641 642 643

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True
644 645 646 647 648 649
            self._inputs = [
                auto_utils.set_data_parallel(var) for var in self._inputs
            ]
            self._labels = [
                auto_utils.set_data_parallel(var) for var in self._labels
            ]
650

651
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
652 653

        fetch_vars = {
654
            "outputs": paddle.utils.flatten(outputs),
655
            "loss": self._losses,
656
            "metrics": metrics,
657 658
        }

659 660 661
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

662 663 664
        auto_utils.set_recompute_segments(
            self._model, self._losses, self._strategy, serial_main_prog
        )
665
        self._dist_contexts[mode] = DistributedContext(
666 667 668
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
669 670 671 672 673
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
674
            self._json_config,
675 676 677 678 679 680
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
681 682 683 684
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
685
            self._json_config,
686
        )
687
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
688
        self._fwd_main_progs[mode] = serial_main_prog.clone()
689

690 691 692
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
693

694 695 696 697 698 699 700 701
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
702 703

        from .tuner.optimization_tuner import OptimizationTuner
704 705 706 707 708 709 710 711 712

        self._optimization_tuner = OptimizationTuner(
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
713 714 715

        self._optimization_tuner.tune()

716
        if self._tuning.run_after_tuning:
717 718
            # update the strategy
            self._dist_contexts[
719 720
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
721

722 723 724 725 726 727
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

728 729
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
730

731 732 733 734
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
735
        # TODO: check this feed_list
736 737 738 739 740
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

741 742
        self._dp_world_sizes = []
        self._dp_ranks = []
743
        for feed_var in feed_list:
744
            dp_world_size, dp_rank = auto_utils.get_input_split_info(
745
                self._cur_rank, feed_var, self._dist_contexts[mode]
746
            )
747 748
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
749

750
    def _parallel(self, mode, all_ranks=False):
751 752
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
C
chenxujun 已提交
753
        # because we may use it to complete the annotation of the backward and update.
754
        parallelizer = Parallelizer(
Y
yuehuayingxueluo 已提交
755 756 757
            mode,
            self._planners[mode].completer,
            self._dist_contexts[mode],
758
        )
759 760 761 762
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
763 764

    def _init_dist_context(self, mode):
765
        # Init dist_context['mode'] with the first planned dist_context
766 767 768 769 770 771 772 773 774 775
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
776 777 778 779 780 781 782 783
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
784 785
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

786
    def _init_comm(self):
787 788 789 790
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
791

792
            if self._strategy.auto_mode == "full_random":
793
                auto_utils.initialize_pg_in_full_mode(
794
                    all_process_groups, self._cur_rank
795
                )
796 797 798
            else:
                for process_group in all_process_groups:
                    process_group.instantiate()
799

800
    def _initialize(self, mode):
801
        self._place = _get_device()
802
        if isinstance(self._place, paddle.framework.CUDAPlace):
803 804 805
            self._place = paddle.framework.CUDAPlace(
                paddle.distributed.ParallelEnv().dev_id
            )
806

807 808 809 810 811
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

812
        dist_context = self._dist_contexts[mode]
813
        if self._dygraph_mode:
814
            dist_main_program = dist_context.dist_main_programs[self._cur_rank]
815 816 817
            self.program_helper.init(
                dist_main_program, self._place, dist_context
            )
818

819
        if self._executor is None:
820
            self._executor = paddle.static.Executor(self._place)
821
            uninitialized = []
822 823 824
            dist_startup_prog = dist_context.dist_startup_programs[
                self._cur_rank
            ]
825 826 827 828 829 830 831 832
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
833

834
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
835 836 837
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
838 839

        if self._strategy.reinit:
Z
zhaoyingli 已提交
840
            self._logger.info("NOTE: parameters will be re-initialized.")
841 842 843
            dist_startup_prog = dist_context.dist_startup_programs[
                self._cur_rank
            ]
844 845
            self._executor.run(dist_startup_prog)

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
864 865 866 867 868 869 870 871
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
872
                more than two items, train_sample_split specifies how to split these items into
873
                input and label. The items before it are input and the left are label. Default: None.
874
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
875 876 877
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
878
                is executed in one epoch before stating the next one. If None, it is equal to
879 880
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
881
                evaluation at the end of epoch. No evaluation will be done if set to None.
882
                Default: None. (Unsupported for now)
883
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
884 885
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
886 887
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
888 889 890
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
891 892
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
893 894 895 896
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
897
                0. Default None.
898 899 900 901 902 903 904 905 906 907 908 909
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
910
                from paddle.distributed.fleet import auto
911 912 913 914 915 916 917 918 919
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
920
                loss = paddle.nn.CrossEntropyLoss()
921 922 923 924
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

925
                engine = auto.Engine(model, loss, optimizer, metrics)
926 927 928 929
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
930 931
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
932 933
            train_data, train_sample_split, batch_size
        )
934 935
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
936
        else:
937
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
938

939 940 941 942 943 944 945
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
946 947
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
948

949
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
976 977
                        return_numpy=self._strategy.return_numpy,
                    )
Z
zhaoyingli 已提交
978 979
                except core.EOFException:
                    break
980
                lr = auto_utils.get_lr(self._optimizer)
981 982 983 984 985 986 987 988 989
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
Z
zhaoyingli 已提交
990 991 992
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
993 994 995 996 997 998 999 1000 1001 1002
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
1003
                val_logs = {
1004
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1027 1028 1029 1030
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
1031 1032
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
1033
                to be a (input, label) pair by default and has two items. If each sample has
1034
                more than two items, valid_sample_split specifies how to split these items into
1035
                input and label. The items before it are input and the left are label. Default: None.
1036
            batch_size (int, optional): The batch size of valid_data. The user's data will
1037
                be used directly without batching if set to None. Default: 1.
1038 1039
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
1040 1041 1042 1043 1044
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1045
                during evaluating. Default: None. (Unused for now)
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1056
                from paddle.distributed.fleet import auto
1057 1058 1059 1060 1061 1062 1063 1064 1065
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
1066
                loss = paddle.nn.CrossEntropyLoss()
1067 1068
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1069
                engine = auto.Engine(model, loss, metrics=metrics)
1070 1071 1072
                engine.evaluate(valid_dataset, batch_size=64)

        """
1073 1074
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1075 1076
            valid_data, valid_sample_split, batch_size
        )
1077 1078
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1079
        else:
1080
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1081

1082 1083 1084 1085 1086 1087
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1088 1089
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1090

1091
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1092

Z
zhaoyingli 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1103 1104 1105
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1106
        logs = {}
1107
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1108
            cbks.on_batch_begin('eval', step, logs)
1109
            try:
1110 1111
                outs = self._executor.run(
                    self.main_program,
1112
                    fetch_list=fetch_names,
1113
                    use_program_cache=self._strategy.use_cache,
1114 1115
                    return_numpy=self._strategy.return_numpy,
                )
1116
            except core.EOFException:
1117
                break
1118 1119 1120
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1121 1122
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1123
        self._reset_metrics()
Z
zhaoyingli 已提交
1124
        return logs
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1136 1137 1138 1139 1140 1141 1142
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1143
                more than two items, test_sample_split specifies how to split these items into
1144 1145 1146
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1147 1148
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1165
                from paddle.distributed.fleet import auto
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1176
                engine = auto.Engine(model)
1177 1178
                engine.predict(valid_dataset, batch_size=64)
        """
1179 1180
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1181 1182
            test_data, test_sample_split, batch_size
        )
1183 1184
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1185
        else:
1186
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1187

1188 1189 1190 1191 1192 1193
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1194 1195
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1196

1197
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1198

Z
zhaoyingli 已提交
1199 1200 1201 1202 1203
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1204
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1205
            cbks.on_batch_begin('predict', step, logs)
1206
            try:
1207 1208
                outs = self._executor.run(
                    self.main_program,
1209
                    fetch_list=fetch_names,
1210
                    use_program_cache=self._strategy.use_cache,
1211 1212
                    return_numpy=self._strategy.return_numpy,
                )
1213
            except core.EOFException:
1214
                break
1215 1216 1217
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1218 1219 1220 1221 1222
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1240 1241 1242
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1243 1244
            dataset, sample_split, batch_size
        )
1245 1246
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1247
        else:
1248
            self._switch_mode(self._mode)
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1263 1264
            steps_per_epoch=steps_per_epoch,
        )
1265 1266
        return dataloader

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1282 1283 1284
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1285 1286
            dataset, sample_split, batch_size
        )
1287 1288 1289 1290
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1303 1304
            collate_fn=collate_fn,
        )
1305 1306
        return dataloader

1307 1308 1309 1310 1311 1312 1313 1314 1315
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
1316
        init_parameters=True,
1317
    ):
1318 1319
        if mode is not None:
            self.to_mode(mode)
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1336 1337
        if inputs or labels:
            self._skip_build = True
1338 1339
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
1340
            )
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
1352 1353 1354
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1355

1356 1357 1358
        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
1359
            self._prepare_program(self._mode, init_parameters)
1360 1361 1362
        else:
            self._switch_mode(self._mode)

1363
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1364 1365 1366 1367
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1368 1369 1370 1371
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1372
            self._prepare_reader()
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1383
        return logs
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1401

1402
        if self._strategy.gradient_merge and batch_size is not None:
1403 1404 1405 1406 1407
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1408
            batch_size //= self._k_steps
1409

1410 1411 1412
        dist_context = self._dist_contexts[self._mode]
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
        dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank]
1413
        dist_main_block = dist_main_prog.global_block()
1414

1415 1416 1417 1418
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1419 1420
        inputs_var = dist_context.serial_feed_vars["inputs"]
        labels_var = dist_context.serial_feed_vars["labels"]
1421 1422 1423 1424
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1425 1426 1427 1428
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1429 1430

        # insert read op at the end of program
1431
        places = paddle.static.cuda_places()
1432
        with static.program_guard(dist_main_prog, dist_startup_prog):
1433
            dataloader = DistributedDataLoader(
1434
                dataset,
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1450
                data_parallel_world_size=self._dp_world_sizes,
1451 1452
                data_parallel_rank=self._dp_ranks,
            )
1453

1454 1455
        return dataloader

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1470 1471

        if self._strategy.gradient_merge and batch_size is not None:
1472 1473 1474 1475 1476
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1477 1478
            batch_size //= self._k_steps

1479 1480 1481
        dist_context = self._dist_contexts[self._mode]
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
        dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank]
1482 1483 1484 1485 1486 1487
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1488 1489
        inputs_var = dist_context.serial_feed_vars["inputs"]
        labels_var = dist_context.serial_feed_vars["labels"]
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1517 1518
                data_parallel_rank=self._dp_ranks,
            )
1519
        self._prepare_reader(feed_list)
1520 1521 1522 1523 1524
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1525 1526
            tune_data, tune_sample_split, batch_size
        )
1527 1528
        self._optimization_tuning(self._mode, tune_data, batch_size)

1529
    def _validate_spec(self, specs):
1530
        specs = auto_utils.to_list(specs)
1531
        self._k_steps = self._strategy.gradient_merge.k_steps
1532 1533
        if specs is not None:
            for i, spec in enumerate(specs):
1534 1535 1536 1537
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1538 1539
                if spec.name is None:
                    raise ValueError(
1540 1541 1542 1543
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1544
                if self._k_steps > 1:
1545
                    shape = list(spec.shape)
1546 1547 1548 1549 1550
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1551
                    shape[0] //= self._k_steps
1552
                    spec.shape = shape
1553 1554 1555
        return specs or []

    def _validate_vars(self, vars):
1556
        vars = auto_utils.to_list(vars)
1557 1558 1559 1560 1561
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1562

1563 1564 1565 1566
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1567 1568 1569 1570
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1571 1572 1573
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
1574
            metrics_name.extend(auto_utils.to_list(m.name()))
Z
zhaoyingli 已提交
1575 1576
        return metrics_name

1577
    def _switch_mode(self, mode):
1578
        assert (
1579
            mode in self._dist_contexts
1580
        ), f"{mode} model is not ready, please call `prepare()` first."
1581
        self.to_mode(mode)
Z
zhaoyingli 已提交
1582
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
1583

1584
    def to_mode(self, mode):
1585 1586 1587 1588
        assert mode in [
            "train",
            "eval",
            "predict",
1589
        ], f"mode {mode} should be one of ['train', 'eval', 'predict']"
1590 1591
        self._mode = mode

1592 1593
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        dist_context = self._dist_contexts[mode]
1594
        program = dist_context.dist_main_programs[self._cur_rank]
1595
        cur_dist_attr = auto_utils.get_dist_attr(program, dist_context)
1596 1597
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
        for name, param in program.state_dict().items():
            param_array = np.array(param)
            if name not in state_dict:
                continue
            if param_array.dtype != state_dict[name].dtype:
                self._logger.info(
                    "cast {}'s dtype from '{}' to '{}'".format(
                        name,
                        str(state_dict[name].dtype),
                        str(param_array.dtype),
                    )
                )
                state_dict[name] = state_dict[name].astype(param_array.dtype)
1611 1612 1613
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1614 1615
        """
        Saves the model, parameters, optimizer state to path.
1616 1617 1618 1619 1620 1621 1622
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1623
                for inference only. If `training` is set to True, the optimizer state
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1636
                from paddle.distributed.fleet import auto
1637 1638 1639 1640 1641 1642 1643 1644 1645
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1646
                loss = paddle.nn.CrossEntropyLoss()
1647 1648 1649 1650
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1651
                engine = auto.Engine(model, loss, optimizer, metrics)
1652 1653 1654 1655
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1656

1657
        """
1658
        if training:
1659
            assert self._mode in self._dist_contexts
Z
zhaoyingli 已提交
1660
            dist_context = self._dist_contexts[self._mode]
1661 1662
            serial_program = dist_context.serial_main_program
            dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
1663 1664 1665 1666 1667 1668
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1669
        else:
1670 1671 1672 1673 1674
            assert "predict" in self._dist_contexts
            dist_context = self._dist_contexts["predict"]
            feed_vars = dist_context.serial_feed_vars['inputs']
            fetch_vars = dist_context.serial_fetch_vars['outputs']
            dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
1675
            if self._strategy.qat.enable and self._strategy.qat.onnx_format:
1676
                from paddle.static.quantization import QuantWeightPass
1677 1678 1679

                self._logger.info("export quantized model.")
                self._logger.info(
1680
                    f"convert config {self._strategy.qat.to_dict()}"
1681 1682 1683 1684 1685 1686 1687 1688
                )
                test_graph = IrGraph(
                    core.Graph(dist_main_prog.desc), for_test=True
                )
                quant_weight_pass = QuantWeightPass(global_scope(), self._place)
                for sub_graph in test_graph.all_sub_graphs():
                    quant_weight_pass.apply(sub_graph)
                dist_main_prog = test_graph.to_program()
1689 1690 1691 1692 1693 1694 1695
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1696

1697 1698 1699 1700 1701 1702
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1703
                optimizer states.
1704 1705 1706
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1707
                mismatch shape). Default: True.
1708
            load_optimizer (bool, optional): If True, the stored optimizer
1709
                states is restored. Otherwise, the optimizer states is initialized
1710
                from scratch. Default: True.
1711 1712 1713 1714 1715 1716 1717 1718 1719

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1720
                from paddle.distributed.fleet import auto
1721 1722 1723 1724 1725 1726 1727 1728 1729
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1730
                loss = paddle.nn.CrossEntropyLoss()
1731 1732 1733 1734
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1735
                engine = auto.Engine(model, loss, optimizer, metrics)
1736 1737 1738 1739 1740
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1741

1742 1743 1744
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1745 1746
            path, load_optimizer
        )
1747
        return self._state_dict, self._dist_attr
1748

1749
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
1760
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1761 1762 1763 1764 1765 1766 1767

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
1768
            self._logger.info(
1769 1770 1771 1772 1773
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
1774 1775 1776
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
1777 1778
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
1779
                    mode, list(self._has_prepared.keys())
1780 1781
                )
            )
1782 1783
        self.to_mode(mode)

1784 1785 1786
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1787 1788 1789
            self._build(mode)
            self._plan(mode)
        else:
1790
            if in_dynamic_mode() or self._dygraph_mode:
1791
                raise ValueError(
1792 1793 1794 1795 1796
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                )
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
1797
                )
1798 1799 1800 1801 1802 1803 1804 1805
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1806 1807 1808 1809 1810 1811

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1812 1813
    @property
    def main_program(self):
1814 1815
        dist_context = self._dist_contexts[self._mode]
        return dist_context.dist_main_programs[self._cur_rank]
1816 1817 1818

    @property
    def startup_program(self):
1819 1820
        dist_context = self._dist_contexts[self._mode]
        return dist_context.dist_startup_programs[self._cur_rank]
1821 1822 1823

    @property
    def dist_context(self):
1824
        return self._dist_contexts[self._mode]
1825 1826 1827

    @property
    def serial_main_program(self):
1828 1829
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_main_program
1830 1831 1832

    @property
    def serial_startup_program(self):
1833 1834 1835 1836 1837 1838 1839
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_startup_program

    @property
    def feed_vars(self):
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_feed_vars
1840 1841 1842

    @property
    def fetch_vars(self):
1843 1844 1845 1846 1847 1848 1849 1850 1851
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_fetch_vars

    @property
    def optimizer(self):
        dist_context = self._dist_contexts[self._mode]
        if dist_context._serial_optimizer:
            return dist_context._serial_optimizer
        return self._optimizer
1852 1853 1854

    @property
    def inputs(self):
1855
        return self._inputs
1856 1857 1858

    @property
    def labels(self):
1859
        return self._labels