average_accumulates_op.cc 8.7 KB
Newer Older
W
wanghaoshuang 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/average_accumulates_op.h"

namespace paddle {
namespace operators {

template <>
W
wanghaoshuang 已提交
21
void GetAccumulators<paddle::platform::CPUDeviceContext>(
22 23
    const framework::ExecutionContext& ctx, int64_t* num_updates_,
    int64_t* num_accumulates_, int64_t* old_num_accumulates_) {
W
wanghaoshuang 已提交
24 25 26
  auto* in_old_num_accumulates = ctx.Input<Tensor>("in_old_num_accumulates");
  auto* in_num_accumulates = ctx.Input<Tensor>("in_num_accumulates");
  auto* in_num_updates = ctx.Input<Tensor>("in_num_updates");
27

28 29 30
  *old_num_accumulates_ = in_old_num_accumulates->data<int64_t>()[0];
  *num_accumulates_ = in_num_accumulates->data<int64_t>()[0];
  *num_updates_ = in_num_updates->data<int64_t>()[0];
31 32 33
}

template <>
W
wanghaoshuang 已提交
34
void SetAccumulators<paddle::platform::CPUDeviceContext>(
35 36
    const framework::ExecutionContext& ctx, int64_t num_updates_,
    int64_t num_accumulates_, int64_t old_num_accumulates_) {
W
wanghaoshuang 已提交
37 38 39
  auto* out_old_num_accumulates = ctx.Output<Tensor>("out_old_num_accumulates");
  auto* out_num_accumulates = ctx.Output<Tensor>("out_num_accumulates");
  auto* out_num_updates = ctx.Output<Tensor>("out_num_updates");
40 41 42 43 44 45 46 47 48 49 50 51

  out_old_num_accumulates->data<int64_t>()[0] = old_num_accumulates_;
  out_num_accumulates->data<int64_t>()[0] = num_accumulates_;
  out_num_updates->data<int64_t>()[0] = num_updates_;
}

class AverageAccumulatesOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
52 53
        ctx->HasInput("param"),
        "Input (param) of average_accumulates op should not be null.");
54
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
55
        ctx->HasInput("in_sum_1"),
56 57
        "Input (sum_1) of average_accumulates op should not be null.");
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
58
        ctx->HasInput("in_sum_2"),
59 60
        "Input (sum_2) of average_accumulates op should not be null.");
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
61
        ctx->HasInput("in_sum_3"),
62
        "Input (sum_3) of average_accumulates op should not be null.");
W
wanghaoshuang 已提交
63 64 65 66 67
    PADDLE_ENFORCE(
        ctx->HasInput("in_num_accumulates"),
        "Input (in_num_accumulates) of average_accumulates op should "
        "not be null.");
    PADDLE_ENFORCE(ctx->HasInput("in_old_num_accumulates"),
68 69 70
                   "Input (old_num_accumulates) of average_accumulates op "
                   "should not be null.");
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
71
        ctx->HasInput("in_num_updates"),
72 73 74
        "Input (num_updates) of average_accumulates op should not be null.");

    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
75
        ctx->HasOutput("out_sum_1"),
76 77
        "Output (sum_1) of average_accumulates op should not be null.");
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
78
        ctx->HasOutput("out_sum_2"),
79 80
        "Output (sum_2) of average_accumulates op should not be null.");
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
81
        ctx->HasOutput("out_sum_3"),
82
        "Output (sum_3) of average_accumulates op should not be null.");
W
wanghaoshuang 已提交
83
    PADDLE_ENFORCE(ctx->HasOutput("out_num_accumulates"),
84 85
                   "Output (num_accumulates) of average_accumulates op should "
                   "not be null.");
W
wanghaoshuang 已提交
86
    PADDLE_ENFORCE(ctx->HasOutput("out_old_num_accumulates"),
87 88 89
                   "Output (old_num_accumulates) of average_accumulates op "
                   "should not be null.");
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
90
        ctx->HasOutput("out_num_updates"),
91 92
        "Output (num_updates) of average_accumulates op should not be null.");

W
wanghaoshuang 已提交
93
    auto in_dim = ctx->GetInputDim("param");
94

W
wanghaoshuang 已提交
95 96 97 98 99 100
    ctx->SetOutputDim("out_sum_1", in_dim);
    ctx->SetOutputDim("out_sum_2", in_dim);
    ctx->SetOutputDim("out_sum_3", in_dim);
    ctx->SetOutputDim("out_num_accumulates", {1});
    ctx->SetOutputDim("out_old_num_accumulates", {1});
    ctx->SetOutputDim("out_num_updates", {1});
101 102 103 104 105 106
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
W
wanghaoshuang 已提交
107
        framework::ToDataType(ctx.Input<Tensor>("param")->type()),
108 109 110 111 112 113
        ctx.GetPlace());
  }
};

class AverageAccumulatesOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
114
  void Make() override {
W
wanghaoshuang 已提交
115
    AddInput("param", "(Tensor), The parameter to be accumulated.");
W
wanghaoshuang 已提交
116
    AddInput("in_sum_1",
W
wanghaoshuang 已提交
117
             "(Tensor), A tensor used to store the parameter "
W
wanghaoshuang 已提交
118 119
             "sums with the same shape as input(param).");
    AddInput("in_sum_2",
W
wanghaoshuang 已提交
120
             "(Tensor), A auxiliary tensor to help "
W
wanghaoshuang 已提交
121 122 123 124
             "accumulating sums of parameter values with the same shape as "
             "input(param). It is used to avoid loss of precision due to too "
             "many sums.");
    AddInput("in_sum_3",
W
wanghaoshuang 已提交
125
             "(Tensor), A auxiliary tensor to help "
W
wanghaoshuang 已提交
126 127 128
             "accumulating sums of parameter values with the same shape as "
             "input(param).");
    AddInput("in_num_accumulates",
W
wanghaoshuang 已提交
129
             "(Tensor<int64_t>), The accumulating times of current window with "
W
wanghaoshuang 已提交
130
             "shape [1].");
W
wanghaoshuang 已提交
131 132 133 134
    AddInput(
        "in_old_num_accumulates",
        "(Tensor<int64_t>), The accumulating times of previous window with "
        "shape [1].");
W
wanghaoshuang 已提交
135
    AddInput("in_num_updates",
W
wanghaoshuang 已提交
136
             "(Tensor<int64_t>), The total number of batches used by trainning "
W
wanghaoshuang 已提交
137 138 139
             "before this batch with shape [1].");

    AddOutput("out_sum_1",
W
wanghaoshuang 已提交
140
              "(Tensor), A tensor used to store the "
W
wanghaoshuang 已提交
141 142
              "parameter sums with the same shape as input(param).");
    AddOutput("out_sum_2",
W
wanghaoshuang 已提交
143
              "(Tensor), A auxiliary tensor to help "
W
wanghaoshuang 已提交
144 145 146 147
              "accumulating sums of parameter values with the same shape as "
              "input(param). It is used to avoid loss of precision due to too "
              "many sums.");
    AddOutput("out_sum_3",
W
wanghaoshuang 已提交
148
              "(Tensor), A auxiliary tensor to help "
W
wanghaoshuang 已提交
149 150
              "accumulating sums of parameter values with the same shape as "
              "input(param).");
W
wanghaoshuang 已提交
151 152 153 154 155 156 157 158 159 160 161 162
    AddOutput(
        "out_num_accumulates",
        "(Tensor<int64_t>), The accumulating times of current window with "
        "shape [1].");
    AddOutput(
        "out_old_num_accumulates",
        "(Tensor<int64_t>) The accumulating times of previous window with "
        "shape [1].");
    AddOutput(
        "out_num_updates",
        "(Tensor<int64_t>), The total number of batches used by trainning "
        "before this batch with shape [1].");
W
wanghaoshuang 已提交
163 164

    AddAttr<float>("average_window",
W
wanghaoshuang 已提交
165 166 167 168 169 170 171 172 173 174 175 176
                   "(float, default 0) "
                   "The rate of average window size relative to num_updates.")
        .SetDefault(0);
    AddAttr<int64_t>("max_average_window",
                     "(int64_t) "
                     "Maximum size of average window. It suggests that the "
                     "number of mini-batches "
                     "in one pass is appropriate value to set.");
    AddAttr<int64_t>("min_average_window",
                     "(int64_t, default 10000L) "
                     "Minimu size of average window.")
        .SetDefault(10000L);
177 178 179

    AddComment(R"DOC(
AverageAccumulates Operator.
W
wanghaoshuang 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
Accumulate the sum of parameter whtin sliding window. The size of sliding window is
determined by 'average_window', 'max_average_window' and 'min_average_window'.
Memory was shared by Input(in_sum_1) and Output(out_sum_1) which acts as an accumulator 'sum_1'.
'sum_2', 'sum_3', 'num_accumulates', 'old_num_accumulates' and 'num_updates' were the same as 'sum_1'.

All the accumulators were inited to zero before training.

And for a mini-batch in training, accumulators were computed as below steps:
    num_updates += 1
    num_accumulates += 1
    sum_1 += param
    if num_updates % kMaxNumAccumulates == 0:
        sum_2 += sum_1
        sum_1 = 0
    if num_accumulates >= min_average_window && num_accumulates >= min(max_average_window, num_updates * average_window):
        sum_3 = sum_1 + sum_2
        sum_1 = 0
        sum_2 = 0
        old_num_accumulates = num_accumulates
        num_accumulates = 0

201 202 203 204 205 206 207 208
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
W
wanghaoshuang 已提交
209
REGISTER_OPERATOR(average_accumulates, ops::AverageAccumulatesOp,
210 211 212
                  ops::AverageAccumulatesOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
213
    average_accumulates,
214 215
    ops::AverageAccumulatesKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AverageAccumulatesKernel<paddle::platform::CPUDeviceContext, double>);