nn.py 325.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
C
chengduozh 已提交
172 173
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
174
    'lstm',
M
minqiyang 已提交
175
    'huber_loss',
Y
Yu Yang 已提交
176 177 178 179 180 181 182 183 184
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
185
       is_test=False,
186
       name=None):
Y
Yu Yang 已提交
187
    """
188
    **Fully Connected Layer**
Y
Yu Yang 已提交
189

190 191 192 193 194 195 196 197
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
198
    to the output as well.
C
caoying03 已提交
199

C
caoying03 已提交
200
    This process can be formulated as follows:
201 202 203

    .. math::

204
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
205 206 207

    In the above equation:

C
caoying03 已提交
208 209 210 211
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
212
    * :math:`Act`: The activation function.
C
caoying03 已提交
213
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
214 215

    Args:
R
ranqiu 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
231 232
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
233
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
234
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
235
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
236

237
    Returns:
F
fengjiayi 已提交
238
        Variable: The transformation result.
239 240

    Raises:
C
caoying03 已提交
241
        ValueError: If rank of the input tensor is less than 2.
242 243 244 245

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
246
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
247
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
248
    """
C
caoying03 已提交
249

C
caoying03 已提交
250
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
251 252 253 254

    dtype = helper.input_dtype()

    mul_results = []
255 256
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
257 258 259
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
260

Y
Yu Yang 已提交
261
        w = helper.create_parameter(
262
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
263
        tmp = helper.create_variable_for_type_inference(dtype)
264
        helper.append_op(
265 266 267
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
268
            outputs={"Out": tmp},
M
mozga-intel 已提交
269 270
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
271 272 273 274
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
275
    else:
X
Xin Pan 已提交
276
        pre_bias = helper.create_variable_for_type_inference(dtype)
277
        helper.append_op(
278 279 280
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
281
            attrs={"use_mkldnn": False})
282 283 284 285
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
286 287


288 289 290
def embedding(input,
              size,
              is_sparse=False,
291
              is_distributed=False,
292 293 294
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
295
    """
296 297
    **Embedding Layer**

298
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
299 300
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
301 302 303

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
304 305

    Args:
306 307 308 309 310
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
311
        is_distributed(bool): Whether to run lookup table from remote parameter server.
312 313
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
314
            with zeros whenever lookup encounters it in :attr:`input`. If
315
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
316 317
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
318
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
319

320 321 322
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
323

324 325
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
326

C
chengduoZH 已提交
327
          dict_size = len(dataset.ids)
328
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
329
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
330 331 332
    """

    helper = LayerHelper('embedding', **locals())
333 334 335 336 337
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
338 339
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
340
    tmp = helper.create_variable_for_type_inference(dtype)
341 342
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
343 344 345 346 347
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
348 349 350
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
351
            'remote_prefetch': remote_prefetch,
352 353
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
354 355 356
    return tmp


W
wopeizl 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
373

W
wopeizl 已提交
374 375 376 377 378 379 380 381 382 383 384
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
385

W
wopeizl 已提交
386 387 388 389
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
390

W
wopeizl 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
477 478


P
phlrain 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
         dropout_prob=0.0,
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
    """
    If Device is GPU, This op will use cudnn LSTM implementation

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
495
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
P
phlrain 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.

M
minqiyang 已提交
522
    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
P
phlrain 已提交
523 524 525 526 527
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
528
        init_h(Variable): The initial hidden state of the LSTM
P
phlrain 已提交
529 530 531 532 533
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
534
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
P
phlrain 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed


    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
M
minqiyang 已提交
553
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
P
phlrain 已提交
554 555
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
M
minqiyang 已提交
556
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
P
phlrain 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
641 642 643 644 645 646 647 648 649 650 651
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
652 653
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
654 655 656
    """
    **Dynamic LSTMP Layer**

657 658 659 660 661 662
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
663 664 665 666 667

    The formula is as follows:

    .. math::

668
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
669

670
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
671

672
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
673

674
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
675

676
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
677

678
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
679

680
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
681

Y
Yibing Liu 已提交
682 683 684 685 686 687
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
688
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
689
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
690
          bias vector).
Y
Yibing Liu 已提交
691 692 693
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
694
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
695
    * :math:`h`: The hidden state.
696
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
697 698
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
699
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
700
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
701
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
702 703
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
704 705 706 707

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
708

Y
Yibing Liu 已提交
709 710 711 712 713 714 715 716 717 718 719 720
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
721
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
722 723
                               hidden-hidden weight and projection weight.

724 725
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
726 727
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
728 729
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
730
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
731 732 733 734 735

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
736
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
737 738 739 740 741 742
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
743
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
744 745 746
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
747
                                - The shape is (1 x 7D).
C
chengduo 已提交
748 749 750 751 752

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
753 754 755 756 757 758 759 760 761
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
762
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
763 764
                              default "tanh".
        proj_activation(str): The activation for projection output.
765
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
766 767
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
768 769
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
770 771

    Returns:
772 773 774 775
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
776 777

    Examples:
778

Y
Yibing Liu 已提交
779 780
        .. code-block:: python

781 782 783 784
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
785
            hidden_dim, proj_dim = 512, 256
786
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
787
                                     act=None, bias_attr=None)
788 789 790
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
791 792 793 794
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
795
    """
796

C
chengduo 已提交
797
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
798
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
799
    size = size // 4
Y
Yibing Liu 已提交
800 801 802 803 804 805 806 807 808 809
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
810 811 812 813 814 815
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
844 845 846 847 848 849 850 851 852
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
853
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
854

855
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
856
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
857

G
guosheng 已提交
858 859 860 861 862 863 864 865 866
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
867

G
guosheng 已提交
868
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
869

G
guosheng 已提交
870
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
871 872
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
873 874 875 876
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
877
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
878 879

    Args:
880 881
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
882
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
883
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
884 885
            is the hidden size.
        size(int): The dimension of the gru cell.
886
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
887 888
            hidden-hidden weight matrix. Note:

889
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
890
              :math:`D` is the hidden size.
891
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
892
              The first part are weights of the update gate and reset gate with
893
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
894
              candidate hidden state with shape :math:`(D \\times D)`.
895 896 897 898 899

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
900
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
901
            the bias in the update gate, reset gate and candidate calculations.
902 903 904
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
905 906
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
907
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
908 909 910
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
911
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
912
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
913 914 915 916
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
917 918

    Returns:
G
guosheng 已提交
919
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
920
            and sequence length is the same with the input.
921

G
guosheng 已提交
922
    Examples:
923

G
guosheng 已提交
924 925
        .. code-block:: python

926 927 928 929
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
930
            hidden_dim = 512
931
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
932
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
933 934 935 936 937 938 939 940 941
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
942
    batch_size = input.shape[0]
G
guosheng 已提交
943
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
944
    if h_0:
G
guosheng 已提交
945
        assert h_0.shape == (
Y
Yancey 已提交
946 947 948
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
949

X
Xin Pan 已提交
950 951 952 953
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
972 973 974
def gru_unit(input,
             hidden,
             size,
975 976
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
977
             activation='tanh',
978
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
979
    """
980
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
981

982 983
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
984

985
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
986

987
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
988

989
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
990 991

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
992 993 994
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
995 996
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

997 998
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
999 1000 1001
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1002 1003 1004

    Args:
        input (Variable): The fc transformed input value of current step.
1005
        hidden (Variable): The hidden value of gru unit from previous step.
1006
        size (integer): The input dimension value.
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1021
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1022
            the bias in the update gate, reset gate and candidate calculations.
1023 1024 1025
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1026 1027
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1028 1029 1030 1031
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1032

1033 1034 1035 1036 1037 1038
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1039

1040
             # assuming we have x_t_data and prev_hidden of size=10
1041
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1042 1043
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1056
    size = size // 3
Y
Yu Yang 已提交
1057 1058

    # create weight
1059 1060
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1061

X
Xin Pan 已提交
1062 1063 1064
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1065
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1066
    # create bias
1067
    if helper.bias_attr:
Y
Yu Yang 已提交
1068 1069 1070
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1071
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1072 1073 1074

    helper.append_op(
        type='gru_unit',
1075
        inputs=inputs,
Y
Yu Yang 已提交
1076 1077 1078 1079 1080 1081
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1082 1083
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1084 1085 1086 1087 1088
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1089
@templatedoc()
1090
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1091 1092 1093 1094 1095 1096 1097
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1098
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1099 1100 1101 1102
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1103 1104 1105
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1106 1107

    """
Y
Yu Yang 已提交
1108 1109 1110 1111 1112 1113
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1114 1115 1116 1117 1118 1119 1120 1121
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1137 1138 1139 1140
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1141

W
wopeizl 已提交
1142 1143
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1144

W
wopeizl 已提交
1145
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1146

W
wopeizl 已提交
1147
        label(${label_type}): ${label_comment}
1148

W
wopeizl 已提交
1149 1150
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1151

W
wopeizl 已提交
1152 1153
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1154

W
wopeizl 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1165
                "Transition": transition,
W
wopeizl 已提交
1166 1167
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1168

W
wopeizl 已提交
1169
    return viterbi_path
Y
Yu Yang 已提交
1170 1171


Y
yi.wu 已提交
1172
@templatedoc()
F
fengjiayi 已提交
1173
def cos_sim(X, Y):
Y
Yu Yang 已提交
1174
    """
Y
yi.wu 已提交
1175 1176 1177
    ${comment}

    Args:
1178 1179
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1180

Y
yi.wu 已提交
1181
    Returns:
1182
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1183
    """
F
fengjiayi 已提交
1184
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1185 1186 1187
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1198 1199 1200 1201 1202
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1203
            dropout_implementation="downgrade_in_infer"):
1204 1205 1206 1207 1208
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1209
    training. The dropout operator randomly sets (according to the given dropout
1210 1211 1212 1213
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1214 1215
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1216 1217 1218 1219 1220 1221 1222
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1234
                                           dropout op can be removed from the program.
P
phlrain 已提交
1235
                                           the program will be efficient
1236

P
phlrain 已提交
1237

1238 1239

    Returns:
1240
        Variable: A tensor variable is the shape with `x`.
1241 1242

    Examples:
1243

1244 1245
        .. code-block:: python

1246 1247
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1248 1249
    """

F
fengjiayi 已提交
1250
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1251 1252 1253
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1254 1255 1256 1257

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1258 1259 1260 1261 1262
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1263 1264 1265 1266
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1267 1268
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1269
        })
1270 1271 1272
    return out


1273
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1274
    """
Y
Yibing Liu 已提交
1275 1276
    **Cross Entropy Layer**

1277 1278 1279
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1280 1281

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1282
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1283

Y
Yibing Liu 已提交
1284
        .. math::
Y
yangyaming 已提交
1285

Y
Yibing Liu 已提交
1286 1287 1288
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1289 1290
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1291 1292 1293 1294 1295

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1296
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1297 1298 1299
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1300 1301
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1302
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1303

Y
Yibing Liu 已提交
1304
    Args:
Y
yangyaming 已提交
1305
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1306 1307 1308 1309
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1310
        label (Variable|list): the ground truth which is a 2-D tensor. When
1311 1312 1313 1314
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1315
        soft_label (bool): a flag indicating whether to
1316
                                           interpretate the given labels as soft
1317
                                           labels. Default: `False`.
M
minqiyang 已提交
1318 1319
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1320
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1321 1322 1323 1324 1325

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1326 1327 1328 1329 1330
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1331 1332 1333 1334 1335 1336

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1337
    """
F
fengjiayi 已提交
1338
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1339
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1340 1341 1342 1343 1344
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1345 1346
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1347 1348 1349
    return out


F
fengjiayi 已提交
1350
def square_error_cost(input, label):
Y
Yu Yang 已提交
1351
    """
1352 1353
    **Square error cost layer**

1354 1355
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1370 1371
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1372 1373

    Returns:
G
guosheng 已提交
1374
        Variable: The tensor variable storing the element-wise squared error \
1375
                  difference of input and label.
1376 1377 1378 1379 1380 1381 1382 1383

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1384
    """
F
fengjiayi 已提交
1385
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1386
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1387 1388 1389 1390 1391 1392
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1393
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1394
    helper.append_op(
F
fengjiayi 已提交
1395 1396
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1397 1398 1399
    return square_out


Y
yi.wu 已提交
1400
@templatedoc()
Y
Yu Yang 已提交
1401 1402 1403 1404
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1405
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1406
    """
Y
yi.wu 已提交
1407
    **Chunk Evaluator**
Y
yi.wu 已提交
1408

Y
yangyaming 已提交
1409
    This function computes and outputs the precision, recall and
1410
    F1-score of chunk detection.
Y
yi.wu 已提交
1411

Y
yi.wu 已提交
1412 1413 1414 1415 1416 1417 1418 1419
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1420

Y
yi.wu 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1446

Y
yi.wu 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1471
    Args:
1472 1473 1474 1475 1476
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1477

Y
yi.wu 已提交
1478
    Returns:
Y
update  
yi.wu 已提交
1479 1480 1481
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1482

Y
yi.wu 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1495
    """
F
fengjiayi 已提交
1496
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1497 1498

    # prepare output
X
Xin Pan 已提交
1499 1500 1501 1502 1503 1504 1505
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1506 1507 1508 1509 1510 1511 1512 1513

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1514 1515 1516 1517
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1518 1519 1520
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1521 1522
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1523
        })
1524 1525
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1526 1527


1528
@templatedoc()
Y
Yu Yang 已提交
1529 1530 1531 1532 1533 1534 1535
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1536 1537
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1538 1539 1540 1541
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1542 1543 1544 1545 1546 1547 1548

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1562

1563 1564
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1565 1566 1567 1568 1569 1570 1571
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1572
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1583
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1584 1585 1586 1587 1588 1589
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1590
def sequence_softmax(input, use_cudnn=False, name=None):
1591 1592 1593
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1594
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1611 1612 1613
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1614

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1626 1627
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1628
    softmax_out = helper.create_variable_for_type_inference(dtype)
1629 1630 1631 1632 1633 1634 1635 1636
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1637
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1638
    """
1639
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1640
    has the same shape as the input.
Q
qiaolongfei 已提交
1641

1642 1643 1644 1645 1646 1647
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1648
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1649 1650 1651 1652 1653 1654 1655

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1656
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1657 1658 1659 1660 1661 1662 1663 1664

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1665 1666 1667
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1680 1681
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1682
    softmax_out = helper.create_variable_for_type_inference(dtype)
1683 1684 1685 1686 1687 1688 1689 1690
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1691 1692 1693
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1694 1695
           stride=1,
           padding=0,
1696
           dilation=1,
Y
Yu Yang 已提交
1697 1698 1699
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1700
           use_cudnn=True,
1701 1702
           act=None,
           name=None):
Y
Yu Yang 已提交
1703
    """
C
chengduoZH 已提交
1704
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1705 1706
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1707
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1708 1709 1710 1711 1712 1713 1714
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1715 1716 1717
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1718

1719
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1720

C
chengduoZH 已提交
1721 1722
    .. math::

C
refine  
chengduoZH 已提交
1723
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1724

T
tensor-tang 已提交
1725
    Where:
C
chengduoZH 已提交
1726

1727 1728 1729 1730 1731
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1732
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1733 1734 1735

    Example:

1736 1737
        - Input:

W
weixing02 已提交
1738
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1739

W
weixing02 已提交
1740
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1741

1742
        - Output:
T
tensor-tang 已提交
1743

W
weixing02 已提交
1744
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1745

C
chengduoZH 已提交
1746
        Where
1747 1748

        .. math::
C
chengduoZH 已提交
1749

W
weixing02 已提交
1750 1751
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1752 1753

    Args:
1754
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1755
        num_filters(int): The number of filter. It is as same as the output
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1784 1785
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1786 1787
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1788
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1789
            will be named automatically. Default: None
C
chengduoZH 已提交
1790 1791

    Returns:
G
guosheng 已提交
1792
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1793 1794
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1795
    Raises:
1796 1797
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1798

C
chengduoZH 已提交
1799 1800 1801
    Examples:
        .. code-block:: python

1802 1803
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1804 1805 1806
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1807
    assert param_attr is not False, "param_attr should not be False here."
1808
    l_type = 'conv2d'
X
xzl 已提交
1809 1810
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1811
        l_type = 'depthwise_conv2d'
1812 1813 1814 1815

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1816 1817 1818 1819 1820
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1821
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1822

C
chengduoZH 已提交
1823 1824 1825
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1826
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1827

C
chengduoZH 已提交
1828 1829
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1830 1831

    input_shape = input.shape
M
minqiyang 已提交
1832
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1833 1834

    def _get_default_param_initializer():
C
chengduo 已提交
1835 1836
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1837 1838 1839 1840 1841 1842 1843 1844
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1845
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1846

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1861
    helper.append_op(
1862
        type=l_type,
Y
Yu Yang 已提交
1863 1864 1865 1866 1867
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1868 1869 1870
        attrs={
            'strides': stride,
            'paddings': padding,
1871
            'dilations': dilation,
C
chengduoZH 已提交
1872
            'groups': groups,
1873
            'use_cudnn': use_cudnn,
1874
            'use_mkldnn': False,
C
chengduoZH 已提交
1875
        })
Y
Yu Yang 已提交
1876 1877 1878 1879 1880 1881

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1899 1900 1901 1902 1903 1904
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1914 1915
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1916 1917 1918
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1919
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1945
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1946 1947
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1948
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1949 1950
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1951
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1952 1953
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1954
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1955 1956 1957 1958 1959 1960
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1971 1972
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1973 1974
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1975
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1976
            will be named automatically. Default: None.
C
chengduoZH 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1989 1990
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1991 1992 1993
    """

    l_type = 'conv3d'
C
chengduo 已提交
1994
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2005
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2019 2020 2021
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2022 2023 2024 2025 2026 2027 2028 2029
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2030
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2045
            'use_mkldnn': False
C
chengduoZH 已提交
2046 2047
        })

2048
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2049 2050 2051 2052

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2053
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2054
    """
Y
yangyaming 已提交
2055 2056 2057
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2069
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2070 2071 2072 2073 2074
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2075
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2076 2077 2078 2079 2080 2081 2082

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2083 2084
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2085

L
Luo Tao 已提交
2086 2087
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2088
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2089
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2090
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2091 2092 2093 2094 2095 2096 2097

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2098

Y
yangyaming 已提交
2099
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2100 2101 2102 2103 2104
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2105 2106
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2107
    """
F
fengjiayi 已提交
2108
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2109
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2110 2111
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2112 2113 2114 2115 2116 2117

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2118 2119
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2120

Y
yangyaming 已提交
2121 2122 2123 2124 2125
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2126 2127 2128
    return pool_out


C
add doc  
chengduoZH 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2148
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2149 2150 2151 2152 2153
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2154
def sequence_first_step(input):
L
Luo Tao 已提交
2155
    """
L
Luo Tao 已提交
2156
    This function gets the first step of sequence.
L
Luo Tao 已提交
2157 2158 2159 2160

    .. code-block:: text

       x is a 1-level LoDTensor:
2161
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2162 2163 2164 2165 2166
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2167
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2168
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2169

L
Luo Tao 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2179

Y
yangyaming 已提交
2180
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2181 2182 2183
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2184 2185 2186
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2187
def sequence_last_step(input):
L
Luo Tao 已提交
2188
    """
L
Luo Tao 已提交
2189
    This function gets the last step of sequence.
L
Luo Tao 已提交
2190 2191 2192 2193

    .. code-block:: text

       x is a 1-level LoDTensor:
2194
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2195 2196 2197 2198 2199
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2200
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2201
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2202

L
Luo Tao 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2212

Y
yangyaming 已提交
2213
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2214 2215 2216
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2217 2218 2219
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2220 2221 2222 2223
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2224
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2225 2226 2227 2228 2229
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2230

Y
Yibing Liu 已提交
2231 2232
	- Case:

2233
            Given the input Variable **input**:
2234

2235 2236 2237
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2238

2239
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2240

2241
            the output Variable will be
2242

2243 2244 2245
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2246 2247

    NOTE: The first dimension size of **input**, **offset** and **length**
2248
          should be equal. The **offset** should start from 0.
2249

Y
Yibing Liu 已提交
2250
    Args:
2251
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2252
                         sequences.
Y
Yibing Liu 已提交
2253 2254 2255 2256 2257 2258
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2259
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2270
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2271 2272 2273 2274
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2275
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2290
@templatedoc()
Y
Yu Yang 已提交
2291
def pool2d(input,
C
chengduoZH 已提交
2292 2293
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2294 2295
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2296
           global_pooling=False,
C
chengduoZH 已提交
2297
           use_cudnn=True,
2298
           ceil_mode=False,
2299 2300
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2301
    """
F
fengjiayi 已提交
2302
    ${comment}
2303 2304

    Args:
2305 2306 2307
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2308
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2309
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2310 2311
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2312
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2313 2314 2315 2316 2317 2318
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2319 2320 2321
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2322
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2323
                        layer will be named automatically.
2324
        exclusive (bool): Whether to exclude padding points in average pooling
2325
                          mode, default is true
F
fengjiayi 已提交
2326

2327
    Returns:
F
fengjiayi 已提交
2328
        Variable: The pooling result.
F
fengjiayi 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2342 2343 2344 2345
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2346
                            global_pooling=False)
Y
Yu Yang 已提交
2347 2348 2349 2350 2351
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2352

C
chengduoZH 已提交
2353 2354 2355 2356 2357
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2358 2359 2360 2361
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2362 2363
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2364

C
Add doc  
chengduoZH 已提交
2365
    l_type = 'pool2d'
2366 2367

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2368
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2369
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2370 2371

    helper.append_op(
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2383 2384
            "use_mkldnn": False,
            "exclusive": exclusive,
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2398 2399
           name=None,
           exclusive=True):
2400 2401
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2402
    pooling configurations mentioned in input parameters.
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2415
        exclusive (bool): Whether to exclude padding points in average pooling
2416
                          mode, default is true
2417

2418
    Returns:
2419
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2420 2421 2422 2423 2424
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2425

C
chengduoZH 已提交
2426 2427 2428 2429 2430
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2431 2432 2433
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2434

C
chengduoZH 已提交
2435 2436
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2437

2438 2439
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2440
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2441
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2442 2443

    helper.append_op(
2444
        type=l_type,
Y
Yu Yang 已提交
2445 2446 2447 2448 2449 2450 2451
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2452
            "paddings": pool_padding,
2453
            "use_cudnn": use_cudnn,
2454
            "ceil_mode": ceil_mode,
2455 2456
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2469
               data_layout='NCHW',
Y
Yang Yang 已提交
2470
               in_place=False,
2471 2472
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2473
               moving_variance_name=None,
2474 2475
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2476
    """
Q
qiaolongfei 已提交
2477 2478 2479 2480
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2481

Q
qiaolongfei 已提交
2482
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2483

Q
qiaolongfei 已提交
2484 2485
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2486 2487 2488
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2501 2502

    Args:
Q
qiaolongfei 已提交
2503
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2504 2505 2506 2507
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2508 2509 2510 2511 2512 2513 2514 2515
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2516
        data_layout(string, default NCHW): NCHW|NHWC
2517
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2518 2519 2520 2521
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2522
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2523
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2524 2525

    Returns:
Q
qiaolongfei 已提交
2526
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2527 2528 2529 2530 2531 2532 2533

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2534
    """
C
chengduo 已提交
2535
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2558
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2559

2560 2561
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2562 2563 2564
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2565
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2566
        shape=param_shape,
2567 2568 2569 2570 2571 2572 2573
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2574
            trainable=False,
W
wanghaoshuang 已提交
2575
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2576
        shape=param_shape,
2577 2578
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2579 2580 2581 2582 2583 2584

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2585 2586 2587 2588
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2589

X
Xin Pan 已提交
2590 2591
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2609 2610 2611 2612
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2613
            "use_mkldnn": False,
2614
            "fuse_with_relu": fuse_with_relu
2615
        })
Y
Yu Yang 已提交
2616 2617 2618 2619

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2620
@templatedoc()
G
guosheng 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2631
    ${comment}
G
guosheng 已提交
2632 2633 2634

    The formula is as follows:

Y
yuyang18 已提交
2635
    ..  math::
G
guosheng 已提交
2636 2637 2638 2639 2640 2641 2642

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2643 2644 2645 2646 2647 2648 2649 2650
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2651

G
guosheng 已提交
2652 2653
    Args:
        input(Variable): The input tensor variable.
2654
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2655
            normalization. Default True.
2656
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2657 2658
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2659
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2660
            Default 1.
2661
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2662
            division by zero. Default 1e-05.
G
guosheng 已提交
2663
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2664 2665
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2666 2667
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2668
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2669 2670
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2671
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2672
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2673
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2674 2675 2676
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2677 2678

    Returns:
Y
yuyang18 已提交
2679
        ${y_comment}
G
guosheng 已提交
2680 2681 2682

    Examples:

Y
yuyang18 已提交
2683 2684 2685
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2701
    if shift:
G
guosheng 已提交
2702 2703 2704 2705 2706 2707
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2708 2709 2710 2711 2712
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2806 2807 2808 2809
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2810 2811 2812
                     padding=0,
                     stride=1,
                     dilation=1,
2813
                     groups=None,
C
caoying03 已提交
2814
                     param_attr=None,
2815
                     bias_attr=None,
C
chengduoZH 已提交
2816
                     use_cudnn=True,
2817
                     act=None,
C
caoying03 已提交
2818
                     name=None):
Y
Yu Yang 已提交
2819
    """
2820 2821 2822 2823 2824 2825 2826 2827
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2828 2829
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2830 2831 2832
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2833 2834 2835 2836 2837

    For each input :math:`X`, the equation is:

    .. math::

2838
        Out = \sigma (W \\ast X + b)
2839

2840
    Where:
2841 2842 2843

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2844 2845 2846 2847
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2848

2849 2850 2851 2852
    Example:

        - Input:

2853
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2854

2855
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2856 2857 2858

        - Output:

2859
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2860 2861

        Where
Y
Yu Yang 已提交
2862

2863 2864
        .. math::

2865 2866 2867 2868
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2869 2870

    Args:
2871 2872 2873 2874
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2875 2876 2877 2878
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2907
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2908 2909 2910
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2911
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2912
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2913 2914

    Returns:
2915
        Variable: The tensor variable storing the convolution transpose result.
2916 2917

    Raises:
2918 2919
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2920 2921 2922 2923

    Examples:
       .. code-block:: python

2924 2925
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2926
    """
C
chengduo 已提交
2927
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2928 2929 2930 2931 2932 2933 2934 2935
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2936 2937 2938
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2939 2940 2941
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2942

C
chengduoZH 已提交
2943 2944
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2945

Y
Yu Yang 已提交
2946 2947 2948 2949 2950
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2951

Y
Yu Yang 已提交
2952 2953
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2954

C
chengduoZH 已提交
2955
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2956
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2957
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2958
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2959
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2960 2961 2962
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2963

2964 2965 2966 2967 2968 2969 2970
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2971
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2972
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2973

Y
Yu Yang 已提交
2974 2975 2976
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2977
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2978
    helper.append_op(
2979
        type=op_type,
Y
Yu Yang 已提交
2980 2981
        inputs={'Input': [input],
                'Filter': [img_filter]},
2982
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2983
        attrs={
2984
            'output_size': output_size,
2985 2986 2987 2988 2989
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2990 2991
        })

2992 2993 2994
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2995 2996


2997
def conv3d_transpose(input,
Y
Yu Yang 已提交
2998 2999 3000
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3001 3002 3003
                     padding=0,
                     stride=1,
                     dilation=1,
3004
                     groups=None,
C
caoying03 已提交
3005
                     param_attr=None,
3006
                     bias_attr=None,
C
chengduoZH 已提交
3007
                     use_cudnn=True,
3008
                     act=None,
C
caoying03 已提交
3009
                     name=None):
Y
Yu Yang 已提交
3010
    """
3011
    **Convlution3D transpose layer**
3012

3013
    The convolution3D transpose layer calculates the output based on the input,
3014
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3015 3016 3017 3018 3019 3020
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3021 3022 3023
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3024 3025 3026 3027 3028

    For each input :math:`X`, the equation is:

    .. math::

3029
        Out = \sigma (W \\ast X + b)
3030 3031 3032

    In the above equation:

3033 3034
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3035 3036 3037 3038
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3039

3040 3041 3042 3043
    Example:

        - Input:

3044
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3045

3046
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3047 3048 3049

        - Output:

3050
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3051 3052

        Where
Y
Yu Yang 已提交
3053

3054 3055
        .. math::

3056 3057 3058
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3059 3060

    Args:
3061
        input(Variable): The input image with [N, C, D, H, W] format.
3062 3063 3064
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3065
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3066 3067
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3068
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3069 3070 3071
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3072 3073
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3074
        stride(int|tuple): The stride size. If stride is a tuple, it must
3075 3076
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3077
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3078 3079 3080
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3081 3082 3083 3084 3085
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3086 3087 3088 3089 3090 3091 3092 3093 3094
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3095 3096
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3097 3098
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3099 3100
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3101 3102

    Returns:
3103
        Variable: The tensor variable storing the convolution transpose result.
3104 3105

    Raises:
3106 3107
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3108 3109 3110 3111

    Examples:
       .. code-block:: python

3112 3113
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3114
    """
C
chengduo 已提交
3115
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3116 3117
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3118
    if not isinstance(input, Variable):
3119
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3120 3121
    input_channel = input.shape[1]

3122 3123 3124
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3125

C
chengduoZH 已提交
3126 3127 3128
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3129 3130 3131 3132 3133 3134
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3135 3136 3137
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3138

3139
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3140
                         padding[0] - 1) // dilation[0] + 1
3141
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3142
                         padding[1] - 1) // dilation[1] + 1
3143
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3144
                         padding[2] - 1) // dilation[2] + 1
3145
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3146
    else:
3147 3148
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3149

3150
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3151
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3152 3153 3154
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3155
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3156
    helper.append_op(
3157
        type=l_type,
Y
Yu Yang 已提交
3158 3159
        inputs={'Input': [input],
                'Filter': [img_filter]},
3160
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3161 3162 3163 3164
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3165
            'groups': groups,
C
chengduoZH 已提交
3166 3167
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3168

3169 3170
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3171
    return out
Y
yangyaming 已提交
3172 3173


Y
yangyaming 已提交
3174
def sequence_expand(x, y, ref_level=-1, name=None):
3175
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3176 3177 3178 3179
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3180 3181 3182 3183 3184

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3185
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3186
                x.data = [[a], [b], [c], [d]]
3187 3188 3189
                x.dims = [4, 1]

            y is a LoDTensor:
3190 3191
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3192

Y
yangyaming 已提交
3193
            ref_level: 0
3194

Y
yangyaming 已提交
3195
            then output is a 1-level LoDTensor:
3196
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3197
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3198 3199 3200 3201
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3202
                x.data = [[a], [b], [c]]
3203 3204 3205
                x.dims = [3, 1]

            y is a LoDTensor:
3206
                y.lod = [[2, 0, 3]]
3207

Y
yangyaming 已提交
3208
            ref_level: -1
3209

Y
yangyaming 已提交
3210 3211 3212
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3213 3214 3215
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3216 3217
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3218
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3219
                        will be named automatically.
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3230
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3231
    """
Y
yangyaming 已提交
3232
    helper = LayerHelper('sequence_expand', input=x, **locals())
3233
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3234
    tmp = helper.create_variable_for_type_inference(dtype)
3235
    helper.append_op(
Y
yangyaming 已提交
3236 3237 3238 3239 3240
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3241
    return tmp
3242 3243


C
chengduo 已提交
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3300
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3301 3302 3303 3304 3305 3306 3307 3308
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3309
@templatedoc()
3310
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3311 3312 3313 3314 3315
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3316 3317 3318
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3319
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3320 3321 3322 3323
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3324 3325 3326
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3327

F
fengjiayi 已提交
3328
    Returns:
M
minqiyang 已提交
3329
        Variable: The padded sequence batch and the original lengths before
3330
                  padding. All sequences has the same length.
M
minqiyang 已提交
3331

F
fengjiayi 已提交
3332 3333 3334 3335 3336 3337 3338
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3339
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3340
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3341 3342 3343 3344 3345
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3346 3347
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3348 3349 3350 3351

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3352 3353 3354 3355 3356 3357
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3358 3359
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3360
        attrs={'padded_length': maxlen})
3361
    return out, length
F
fengjiayi 已提交
3362 3363


3364
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3365
    """
3366
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3367

3368 3369
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3379 3380 3381
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3382
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3383 3384 3385 3386 3387 3388

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3389
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3390 3391 3392 3393 3394 3395

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3396 3397
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3412
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3424 3425 3426 3427 3428 3429 3430 3431 3432
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3433 3434
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3435 3436 3437

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3438 3439

    This layer does the search in beams for one time step. Specifically, it
3440 3441 3442 3443 3444 3445
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3446

3447 3448 3449 3450 3451 3452 3453 3454
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3455

3456
    Args:
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3482

3483
    Returns:
3484 3485
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3486 3487 3488 3489

    Examples:
        .. code-block:: python

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3507 3508 3509 3510
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3511 3512 3513
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3514 3515 3516 3517 3518

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3519
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3537 3538 3539 3540 3541 3542 3543
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3544

3545 3546 3547 3548 3549 3550 3551 3552 3553
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3554

3555 3556 3557 3558 3559 3560
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3561

3562 3563
    Examples:
        .. code-block:: python
3564

3565 3566 3567 3568 3569 3570
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3571 3572
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3588 3589 3590 3591
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3592
              param_attr=None,
C
caoying03 已提交
3593 3594
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3595 3596 3597 3598
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3599
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3600

3601
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3602

3603
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3604

3605
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3606 3607 3608

            h_t & = o_t tanh(c_t)

3609 3610 3611 3612 3613 3614
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3615 3616 3617

        .. math::

3618
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3619 3620 3621 3622 3623 3624 3625 3626

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3627
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3628 3629

    Args:
Y
yangyaming 已提交
3630 3631 3632 3633 3634 3635
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3636
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3649 3650
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3651 3652

    Returns:
Y
yangyaming 已提交
3653
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3654 3655

    Raises:
3656 3657 3658 3659
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3660 3661 3662 3663 3664 3665

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3666
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3667
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3668
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3685
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3686 3687 3688 3689
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3690 3691
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3692 3693 3694
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3695
    size = cell_t_prev.shape[1]
3696
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3697 3698
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3699
                param_attr=param_attr,
3700
                bias_attr=bias_attr)
Y
yangyaming 已提交
3701
    dtype = x_t.dtype
X
Xin Pan 已提交
3702 3703
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3713
    return h, c
G
guosheng 已提交
3714 3715


C
caoying03 已提交
3716
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3717
    """
Y
yangyaming 已提交
3718
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3719 3720 3721

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3722
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3723 3724
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3725 3726
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3727
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3728
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3729
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3730 3731
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3732 3733 3734

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3735

G
guosheng 已提交
3736 3737 3738 3739 3740 3741
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3742
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3743 3744 3745 3746
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3747 3748 3749 3750

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3751
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3752 3753 3754
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3755 3756
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3757
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3758 3759
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3760 3761 3762 3763 3764
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3765
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3766 3767 3768 3769
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3770 3771


C
caoying03 已提交
3772
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3773
    """
Y
Yibing Liu 已提交
3774
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3775 3776 3777

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3778 3779 3780
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3781
            must be in the range :math:`[-rank(input), rank(input))`. If
3782
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3783
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3784 3785
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3786
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3787
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3788
                       will be named automatically.
G
guosheng 已提交
3789 3790

    Returns:
Y
Yibing Liu 已提交
3791
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3792

G
guosheng 已提交
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3803 3804
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3805 3806 3807 3808 3809 3810 3811

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3812 3813
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3814
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3815 3816
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3817 3818 3819 3820 3821
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3822
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3823 3824 3825 3826
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3827 3828


C
caoying03 已提交
3829
def reduce_max(input, dim=None, keep_dim=False, name=None):
3830
    """
Y
yangyaming 已提交
3831
    Computes the maximum of tensor elements over the given dimension.
3832 3833 3834

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3835
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3836 3837 3838
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3839
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3840 3841
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3842
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3843 3844
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3845 3846 3847

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3848

3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3860 3861 3862 3863 3864 3865 3866

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3867 3868
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3869
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3870 3871
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3872 3873 3874 3875 3876
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3877
            'dim': dim if dim != None else [0],
3878 3879 3880 3881 3882 3883
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3884
def reduce_min(input, dim=None, keep_dim=False, name=None):
3885
    """
Y
yangyaming 已提交
3886
    Computes the minimum of tensor elements over the given dimension.
3887 3888 3889

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3890
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3891 3892 3893
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3894
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3895 3896
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3897
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3898 3899
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3900 3901 3902

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3903

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3915 3916 3917 3918 3919 3920 3921

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3922 3923
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3924
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3925 3926
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3927 3928 3929 3930 3931
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3932
            'dim': dim if dim != None else [0],
3933 3934 3935 3936
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3937 3938


3939 3940 3941 3942 3943 3944
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3945
        dim (list|int|None): The dimensions along which the product is performed. If
3946 3947
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3948 3949
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3950 3951 3952
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3953
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3954
            layer will be named automatically.
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3969
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3970
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3971 3972 3973 3974 3975 3976 3977

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3978 3979
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3980
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3981 3982
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3983 3984 3985 3986 3987
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3988
            'dim': dim if dim != None else [0],
3989 3990 3991 3992 3993 3994
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3995
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3996
    """
C
caoying03 已提交
3997
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3998 3999 4000

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4001 4002 4003 4004 4005
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4006
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4007
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4008
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4009 4010
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4011 4012

    Returns:
D
dzhwinter 已提交
4013
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4014 4015 4016 4017 4018 4019 4020 4021 4022

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4023 4024
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4040
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4063
    .. math::
4064 4065

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4066 4067 4068 4069 4070

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4071
        x(Variable|list): The input tensor to l2_normalize layer.
4072
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4073 4074
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4075
        epsilon(float): The epsilon value is used to avoid division by zero, \
4076
            the defalut value is 1e-10.
4077
        name(str|None): A name for this layer(optional). If set None, the layer \
4078
            will be named automatically.
C
caoying03 已提交
4079 4080

    Returns:
4081
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4082 4083

    Examples:
4084

C
caoying03 已提交
4085 4086
        .. code-block:: python

4087 4088 4089 4090
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4091 4092
    """

F
fengjiayi 已提交
4093 4094
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4095 4096
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4097 4098
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4099
    helper.append_op(
4100 4101 4102 4103
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4104
        attrs={
4105 4106
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4107 4108
        })
    return out
4109 4110


S
sneaxiy 已提交
4111
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4112
    """
Y
ying 已提交
4113 4114 4115 4116
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4117

C
chengduoZH 已提交
4118
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4119
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4120

4121 4122 4123 4124 4125
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4126
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4127

C
chengduoZH 已提交
4128
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4129
      performs in the following way.
G
guosheng 已提交
4130

4131
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4132
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4133
        last two dimensions and a batched matrix multiply supporting broadcast
4134
        applies on the two tensors.
G
guosheng 已提交
4135

Y
ying 已提交
4136 4137
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4138
    removed after matrix multiplication.
G
guosheng 已提交
4139 4140 4141

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4142 4143 4144
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4145
        alpha (float): The scale of output. Default 1.0.
4146
        name(str|None): A name for this layer(optional). If set None, the layer
4147
            will be named automatically.
G
guosheng 已提交
4148 4149

    Returns:
4150
        Variable: The product Tensor variable.
G
guosheng 已提交
4151

G
guosheng 已提交
4152 4153 4154
    Examples:
        .. code-block:: python

4155
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4156 4157
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4158

4159 4160
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4161

4162 4163
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4164

4165 4166
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4167 4168 4169 4170

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4171 4172
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4173

Y
ying 已提交
4174
            # x: [M], y: [N]
4175
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4176
    """
Y
ying 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4189
            y_shape = y_shape + [1]
Y
ying 已提交
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4206
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4207
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4208
    helper.append_op(
4209 4210 4211 4212
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4213 4214 4215
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4216
            'alpha': float(alpha),
S
sneaxiy 已提交
4217
        })
4218
    return out
4219 4220


4221
def topk(input, k, name=None):
Q
qingqing01 已提交
4222 4223 4224 4225
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4226
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4227 4228 4229 4230 4231 4232
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4254 4255 4256
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4257
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4258
                 of input.
4259
        name(str|None): A name for this layer(optional). If set None, the layer
4260
                       will be named automatically.
F
fengjiayi 已提交
4261
                       Default: None
Q
qingqing01 已提交
4262 4263

    Returns:
4264 4265 4266
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4267
        within the last dimension of input.
Q
qingqing01 已提交
4268

F
fengjiayi 已提交
4269 4270
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4271 4272 4273 4274 4275 4276 4277

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4278 4279
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4291
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4292
    """
Y
ying 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4302

Y
ying 已提交
4303
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4304

4305
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4306 4307
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4308
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4309

4310
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4311 4312
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4313

4314 4315 4316
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4317
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4318
                          the length of reference string.
4319
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4320
                                     calculating edit distance.
4321
        name (str): The name of this layer. It is optional.
4322

W
wanghaoshuang 已提交
4323
    Returns:
W
wanghaoshuang 已提交
4324
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4325 4326 4327 4328

    Examples:
        .. code-block:: python

T
tink2123 已提交
4329 4330
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4331
            cost = fluid.layers.edit_distance(input=x,label=y)
4332
    """
4333
    helper = LayerHelper("edit_distance", **locals())
4334

4335
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4336
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4337 4338
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4339 4340 4341 4342 4343

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4344
            attrs={"tokens": ignored_tokens})
4345 4346 4347 4348 4349
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4350
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4351
            attrs={"tokens": ignored_tokens})
4352 4353
        label = erased_label

4354
    # edit distance op
X
Xin Pan 已提交
4355 4356
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4357 4358 4359 4360
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4361 4362
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4363 4364
        attrs={"normalized": normalized})

4365
    return edit_distance_out, sequence_num
4366 4367 4368 4369 4370


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4371

Y
ying 已提交
4372 4373 4374 4375
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4393
        input.lod = [[4, 4]]
M
minqiyang 已提交
4394

4395
        Computation:
4396

4397 4398 4399 4400 4401 4402
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4403 4404 4405 4406 4407

        output.data = [[2],
                       [1],
                       [3]]

4408
        output.lod = [[2, 1]]
4409

4410

4411 4412
    Args:

Y
ying 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4422
        name (str): The name of this layer. It is optional.
4423 4424

    Returns:
4425 4426
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
M
minqiyang 已提交
4427
                  in result were empty, the result LoDTensor will be [-1] with
4428
                  LoD [[]] and dims [1, 1].
4429 4430 4431 4432 4433

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4434

4435
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4436
    """
4437
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4438
    _, topk_indices = topk(input, k=1)
4439 4440

    # ctc align op
X
Xin Pan 已提交
4441
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4442 4443 4444
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4445
        outputs={"Output": [ctc_out]},
4446 4447
        attrs={"merge_repeated": True,
               "blank": blank})
4448
    return ctc_out
4449 4450


W
Wu Yi 已提交
4451
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4452
    """
4453 4454
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4455
    to compute Connectionist Temporal Classification (CTC) loss.
4456 4457
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4458 4459 4460
    input tensor.

    Args:
4461
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4462 4463 4464 4465
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4466
       label (Variable): The ground truth of variable-length sequence,
4467 4468 4469
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4470 4471
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4472 4473 4474
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4475
         follewed by a mean_op.
W
Wu Yi 已提交
4476
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4477 4478

    Returns:
4479 4480
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4481 4482

    Examples:
4483

W
wanghaoshuang 已提交
4484
        .. code-block:: python
4485

4486 4487 4488
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4489 4490

    """
F
fengjiayi 已提交
4491
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4492 4493
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4494 4495 4496 4497 4498 4499
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4500 4501 4502 4503 4504
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4505
    return loss_out
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4521 4522 4523
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4524 4525 4526 4527 4528
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4529

4530
            out.lod  = [[0, 1, 3]]
4531 4532 4533 4534

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4535 4536 4537 4538 4539 4540 4541
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4542 4543 4544

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4545 4546

    Returns:
4547

4548 4549 4550 4551 4552
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4553
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4554
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4555 4556
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4557
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4558 4559 4560 4561 4562 4563
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4564 4565


4566 4567 4568 4569
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4570 4571 4572 4573 4574 4575
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4576
        num_neg_samples=None,
4577 4578 4579
        name=None,
        sampler="uniform",
        custom_dist=None,
4580 4581
        seed=0,
        is_sparse=False):
4582 4583 4584 4585 4586 4587 4588
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4589 4590
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4591
            sample is 1.0.
C
chengduo 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4601
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4602 4603
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4604 4605 4606
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4607
        custom_dist (float[]): A float[] with size=num_total_classes.
4608 4609 4610 4611
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4612
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4613

4614
    Returns:
Y
Yibing Liu 已提交
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4642 4643 4644 4645 4646 4647 4648 4649 4650

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4651

4652
    """
Y
Yang Yu 已提交
4653 4654 4655
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4656 4657

    dim = input.shape[1]
Y
Yang Yu 已提交
4658 4659 4660 4661 4662 4663
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4664
    inputs = {}
C
chengduo 已提交
4665 4666 4667 4668 4669 4670 4671
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4672 4673 4674
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4675

4676 4677 4678 4679
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4680 4681 4682 4683 4684 4685 4686

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4739 4740 4741 4742
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4743 4744 4745 4746 4747
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4748 4749
    attrs = {
        'num_total_classes': int(num_total_classes),
4750 4751
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4752 4753
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4754
    }
Y
Yang Yu 已提交
4755 4756 4757

    helper.append_op(
        type='nce',
C
chengduo 已提交
4758
        inputs=inputs,
Y
Yang Yu 已提交
4759 4760 4761 4762 4763 4764
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4765
    return cost / (num_neg_samples + 1)
4766 4767


C
chengduo 已提交
4768 4769
def hsigmoid(input,
             label,
4770
             num_classes,
C
chengduo 已提交
4771 4772
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4773
             name=None,
4774 4775 4776
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4777
             is_sparse=False):
W
weixing02 已提交
4778 4779
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4780
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
4781
    complete binary tree, or you can use is_custom to pass your own tree to
4782
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4783 4784 4785 4786 4787 4788
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4789
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4790
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4791

4792 4793 4794 4795 4796
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
4797
        4. now, each word should has its path and code along the path, you can pass a batch of path and code
4798 4799 4800
        related to the same batch of inputs.


W
weixing02 已提交
4801
    Args:
M
minqiyang 已提交
4802
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4803 4804 4805 4806
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
4807 4808
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
4809
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
4821
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
4822
            it should be in leaf -> root order
M
minqiyang 已提交
4823 4824 4825
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
4826
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
4827
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
4828
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
4829
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
4830
             of W and input will be sparse.
W
weixing02 已提交
4831 4832

    Returns:
J
JiabinYang 已提交
4833
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4834 4835 4836 4837 4838

    Examples:

        .. code-block:: python

G
guosheng 已提交
4839 4840 4841
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4842 4843 4844 4845
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4846 4847
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4848
    dim = input.shape[1]
4849
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4850 4851 4852
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4853 4854 4855 4856
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4857 4858
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4859 4860 4861
    else:
        pass

J
JiabinYang 已提交
4862 4863
    weights = None

4864
    if not is_custom:
J
JiabinYang 已提交
4865 4866 4867 4868 4869 4870 4871 4872
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4873
            shape=[num_classes, dim],
J
JiabinYang 已提交
4874 4875
            is_bias=False,
            dtype=input.dtype)
4876 4877 4878
    inputs = {
        "X": input,
        "W": weights,
4879 4880
        "PTable": path_table,
        "PathCode": path_code,
4881 4882
        "Label": label
    }
W
weixing02 已提交
4883
    if helper.bias_attr:
4884
        if not is_custom:
J
JiabinYang 已提交
4885 4886
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4887
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4888 4889 4890 4891 4892 4893
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4894
                shape=[num_classes, 1],
J
JiabinYang 已提交
4895 4896 4897
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4898 4899
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4900
        inputs=inputs,
W
weixing02 已提交
4901 4902
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4903 4904
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4905 4906 4907
    return out


Y
fix ci.  
ying 已提交
4908
def transpose(x, perm, name=None):
Y
ying 已提交
4909 4910 4911 4912 4913 4914 4915
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4916 4917 4918
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4919 4920 4921 4922 4923 4924 4925

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4926
            # use append_batch_size=False to avoid prepending extra
4927
            # batch size in shape
4928
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4929
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4930
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4931 4932
    """

Y
fix ci.  
ying 已提交
4933
    if len(perm) != len(x.shape):
Y
ying 已提交
4934 4935 4936
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4937 4938 4939 4940 4941 4942
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4943 4944

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4945 4946
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4947
    helper.append_op(
4948
        type='transpose2',
Y
fix ci.  
ying 已提交
4949
        inputs={'X': [x]},
4950 4951
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4952 4953
        attrs={'axis': perm})
    return out
4954 4955


4956 4957 4958 4959 4960 4961 4962
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4963
    """
4964 4965 4966 4967 4968 4969 4970
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4999 5000 5001 5002 5003 5004 5005 5006 5007
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5008 5009 5010
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5011 5012 5013 5014 5015
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5043 5044 5045
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5058
            output.dims = {8, 8}
5059

5060
            output.lod = [[4, 4]]
5061

5062
    Examples:
5063 5064 5065

        .. code-block:: python

5066 5067
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5068 5069

    """
W
wanghaoshuang 已提交
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5080 5081 5082 5083 5084 5085 5086
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5087
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5088
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5089
    helper.append_op(
5090
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5091
    return out
5092 5093


Y
yuyang18 已提交
5094
@templatedoc()
5095
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5096 5097
    """
    ${comment}
5098 5099

    Args:
Y
yuyang18 已提交
5100
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5101 5102
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5103 5104 5105 5106 5107
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5108
        ${out_comment}.
5109 5110

    Examples:
Y
yuyang18 已提交
5111 5112 5113 5114
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5115 5116 5117 5118 5119 5120
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5121
    out = helper.create_variable_for_type_inference(dtype)
5122 5123 5124 5125 5126
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5127
    return helper.append_activation(out)
5128 5129


Y
yuyang18 已提交
5130
@templatedoc()
5131 5132
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5133 5134 5135 5136 5137 5138 5139
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5140 5141

    Args:
Y
yuyang18 已提交
5142 5143
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5144 5145

    Returns:
Y
yuyang18 已提交
5146
        ${out_comment}.
5147 5148
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5149 5150 5151 5152 5153

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5154
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5155 5156 5157 5158 5159 5160
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5161 5162


5163 5164 5165
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
5166
                               ignore_index=-100,
5167 5168
                               numeric_stable_mode=False,
                               return_softmax=False):
5169 5170
    """
    **Softmax With Cross Entropy Operator.**
5171

5172 5173 5174 5175
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5176

5177 5178 5179
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5180

5181 5182 5183
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5184

5185
    The equation is as follows:
5186

5187
    1) Hard label (one-hot label, so every sample has exactly one class)
5188

5189 5190 5191 5192
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5193

5194 5195 5196
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5197

5198 5199 5200 5201
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5202 5203 5204
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5205

S
sneaxiy 已提交
5206 5207 5208 5209 5210 5211 5212 5213
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5214 5215 5216 5217 5218 5219 5220 5221
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5222 5223
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5224
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5225 5226 5227
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5228 5229 5230
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5231
                                    stable algorithm. Default: False
5232
        return_softmax (bool): A flag indicating whether to return the softmax
5233
                               along with the cross entropy loss. Default: False
5234

5235
    Returns:
5236 5237 5238 5239
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5240
                              2-D tensor with shape [N x K].
5241 5242 5243 5244 5245 5246 5247

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5248 5249
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5250 5251
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5252 5253
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5254 5255 5256 5257 5258 5259
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5260 5261 5262 5263 5264
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5265 5266 5267 5268

    if return_softmax:
        return loss, softmax

5269 5270 5271 5272 5273
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5274 5275
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5276
    For each instance, it computes the smooth L1 loss element by element first
5277
    and then sums all the losses. So the shape of ouput Variable is
5278
    [batch_size, 1].
5279

5280 5281
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5282
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5283
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5284
            L1 loss op with same shape as :attr:`x`.
5285
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5286 5287
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5288
            by this tensor element by element.
5289
        outside_weight (Variable|None): A tensor with rank at least 2. This
5290 5291
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5292
            element by element.
5293
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5294 5295
           scalar with default value 1.0.

5296
    Returns:
5297
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5298 5299 5300 5301 5302

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5303 5304
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5305
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5306
            out = fluid.layers.smooth_l1(x=fc, y=label)
5307
    """
5308

5309
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5310 5311
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5324 5325 5326 5327


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5328
    This layer creates the one-hot representations for input indices.
5329 5330

    Args:
Y
Yibing Liu 已提交
5331 5332
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5333 5334

    Returns:
Y
Yibing Liu 已提交
5335
        Variable: The one-hot representations of input.
5336 5337

    Examples:
C
caoying03 已提交
5338
        .. code-block:: python
5339

Y
Yibing Liu 已提交
5340 5341
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5342 5343
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5344
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5345 5346 5347 5348 5349 5350
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5351 5352


Y
Yu Yang 已提交
5353
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5354
    """
Y
yi.wu 已提交
5355 5356 5357
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5358 5359 5360 5361 5362 5363

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5364 5365
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5366 5367 5368 5369 5370 5371

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5372 5373
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5374 5375
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5376 5377 5378 5379 5380
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5381
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5382
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5383 5384
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5385 5386
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5387 5388 5389
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5390 5391


5392
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5393
    """
C
caoying03 已提交
5394 5395
    Gives a new shape to the input Tensor without changing its data.

5396 5397 5398 5399 5400
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5401

5402
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5403

5404 5405 5406 5407
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5408
    2. 0 means the actual dimension value is going to be copied from the
5409 5410 5411 5412
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5413 5414

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5415
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5416
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5417

5418
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5419 5420
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5421 5422
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5423
    dimensions.
C
caoying03 已提交
5424

5425
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5426 5427 5428 5429
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5430 5431

    Args:
5432
        x(variable): The input tensor.
C
caoying03 已提交
5433 5434
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5435 5436 5437 5438 5439
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5440 5441
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5442 5443 5444 5445 5446 5447 5448
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5449
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5450

5451
    Returns:
G
guosheng 已提交
5452 5453 5454 5455
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5456

X
Xin Pan 已提交
5457 5458 5459
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5460 5461
    Examples:
        .. code-block:: python
G
guosheng 已提交
5462

5463
            data = fluid.layers.data(
5464
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5465
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5466
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5467 5468 5469
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5470
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5471 5472 5473 5474 5475
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5476

5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5492
    helper = LayerHelper("reshape2", **locals())
5493 5494
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5495
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5496
    helper.append_op(
5497
        type="reshape2",
X
Xin Pan 已提交
5498
        inputs=inputs,
D
dzhwinter 已提交
5499
        attrs={"shape": shape},
5500 5501
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5502

D
dzhwinter 已提交
5503
    return helper.append_activation(out)
5504

5505

5506
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5507
    """
M
minqiyang 已提交
5508 5509 5510
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5511
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5512

Y
Yibing Liu 已提交
5513 5514
    Examples:
    Case 1:
M
minqiyang 已提交
5515
      Given
Y
Yibing Liu 已提交
5516 5517 5518 5519 5520 5521 5522 5523
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5524
        and
Y
Yibing Liu 已提交
5525 5526 5527
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5528

Y
Yibing Liu 已提交
5529
    Args:
5530
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5531
        axes (list): List of integers, indicating the dimensions to be squeezed.
5532
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5533 5534 5535 5536 5537 5538 5539 5540

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5541
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5542 5543
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5544 5545
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5546
    helper.append_op(
5547
        type="squeeze2",
5548
        inputs={"X": input},
Y
Yibing Liu 已提交
5549
        attrs={"axes": axes},
5550 5551
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5552

5553 5554 5555
    return out


5556
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5557
    """
M
minqiyang 已提交
5558 5559 5560
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5561

M
minqiyang 已提交
5562 5563
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5564
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5565

Y
Yibing Liu 已提交
5566
    Args:
5567
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5568
        axes (list): List of integers, indicating the dimensions to be inserted.
5569
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5570 5571 5572 5573 5574 5575 5576 5577

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5578
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5579 5580
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5581 5582
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5583
    helper.append_op(
5584
        type="unsqueeze2",
5585
        inputs={"X": input},
Y
Yibing Liu 已提交
5586
        attrs={"axes": axes},
5587 5588
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5589

5590 5591
    return out

5592

Y
yangyaming 已提交
5593
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5594
    """
Y
Yibing Liu 已提交
5595
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5596 5597 5598 5599
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5600
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5601 5602 5603 5604 5605 5606

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5607
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5608 5609 5610
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5611
            target_lod: [4, 2]
Y
yangyaming 已提交
5612 5613

            then we get a 1-level LoDTensor:
5614
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5615 5616 5617 5618 5619 5620
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5621
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5622 5623 5624 5625
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5626
                y.data = [[2, 4]]
Y
yangyaming 已提交
5627 5628 5629
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5630
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5631 5632 5633 5634 5635 5636
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5637
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5638 5639 5640 5641
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5642
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5643 5644 5645 5646
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5647
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5648 5649 5650 5651 5652
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5653
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5654
                           from :attr:`y`.
Y
yangyaming 已提交
5655
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5656
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5657 5658

    Returns:
Y
Yibing Liu 已提交
5659
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5660 5661

    Raises:
Y
Yibing Liu 已提交
5662
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5663 5664 5665 5666 5667 5668 5669 5670 5671

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5672
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5698
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5727 5728
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5741 5742 5743
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5757 5758 5759 5760


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5761
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5762
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5763

G
guosheng 已提交
5764 5765 5766 5767
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5790
                         The length of :attr:paddings must be
G
guosheng 已提交
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5801

G
guosheng 已提交
5802 5803 5804 5805 5806 5807
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5808
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5809 5810 5811 5812 5813 5814 5815
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5816 5817


C
chengduo 已提交
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
5849 5850
		And
            pad_value = -1,
C
chengduo 已提交
5851

5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5887
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5888 5889 5890 5891 5892 5893 5894 5895 5896
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5897 5898 5899 5900 5901 5902 5903
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5904 5905
    called label-smoothing regularization (LSR).

5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5929
                              be :math:`(1, class\_num)`.
5930 5931
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5932
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5952
    smooth_label = helper.create_variable_for_type_inference(dtype)
5953 5954 5955 5956 5957 5958 5959
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5960 5961


W
wopeizl 已提交
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5998 5999


J
jerrywgz 已提交
6000 6001 6002 6003 6004 6005
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6006 6007
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6024 6025 6026
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6027 6028 6029 6030 6031 6032
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6033
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6074 6075
        .. code-block:: python

W
whs 已提交
6076 6077 6078 6079
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6080
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6081 6082 6083 6084 6085 6086
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6087 6088


6089 6090 6091 6092
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6093 6094
                 resample='BILINEAR',
                 actual_shape=None):
6095
    """
Q
qiaolongfei 已提交
6096
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6097

6098
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6099 6100 6101
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6102

6103
        'BILINEAR' : Bilinear interpolation
6104

6105
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6106

6107
    Args:
6108
        input (Variable): The input tensor of image resize layer,
6109 6110
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6111
        out_shape(list|tuple|Variable|None): Output shape of image resize
6112 6113
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6114
        scale(float|None): The multiplier for the input height or width.
6115 6116 6117
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6118 6119
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6120
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6121
                       currently.
6122
                       Default: 'BILINEAR'
6123 6124 6125
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6126
                                :attr:`out_shape` and :attr:`scale` specifying
6127 6128 6129 6130 6131 6132 6133
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6134 6135
                                constructing stage.
                                Default: None
6136 6137

    Returns:
Q
update  
qiaolongfei 已提交
6138 6139
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6140

6141 6142 6143
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6144
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6145 6146 6147 6148
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6149 6150 6151
    Examples:
        .. code-block:: python

6152
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6153
    """
6154 6155 6156 6157
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6158 6159
    if resample not in resample_methods:
        raise ValueError(
6160
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6161
        )
6162
    resample_type = resample_methods[resample]
6163
    if out_shape is None and scale is None:
6164
        raise ValueError("One of out_shape and scale must not be None.")
6165
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6166
    dtype = helper.input_dtype()
6167 6168 6169 6170

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6171 6172 6173
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6174
    if out_shape is not None:
6175 6176 6177 6178
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6179
            inputs['OutSize'] = out_shape
6180 6181 6182 6183 6184 6185 6186 6187
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6188 6189 6190 6191
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6192 6193 6194 6195 6196
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6197
    out = helper.create_variable_for_type_inference(dtype)
6198
    helper.append_op(
6199
        type='{}_interp'.format(resample_type),
6200
        inputs=inputs,
6201
        outputs={"Out": out},
6202 6203 6204
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6205
    return out
F
stash  
fengjiayi 已提交
6206 6207


6208
@templatedoc(op_type="bilinear_interp")
6209 6210 6211 6212 6213
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6214
    """
6215 6216
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6217 6218
    in priority order.

6219 6220 6221 6222
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6223 6224
    again in the other direction.

6225
    For details of bilinear interpolation, please refer to Wikipedia:
6226
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6227 6228 6229 6230 6231

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6232

Y
yuyang18 已提交
6233 6234 6235 6236 6237
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6238 6239 6240
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6241
                                :attr:`out_shape` and :attr:`scale` specifying
6242 6243 6244 6245 6246 6247 6248
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6249 6250
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6251 6252 6253

    Returns:
        ${out_comment}.
6254 6255 6256 6257 6258

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6259 6260
    """

6261
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6262 6263


6264
@templatedoc(op_type="nearest_interp")
6265 6266 6267 6268 6269
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6270
    """
6271
    Resize input by performing nearest neighbor interpolation in both the
6272 6273
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6274 6275
    out_shape and scale in priority order.

6276
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6277
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6278 6279 6280 6281 6282

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6283

Y
yuyang18 已提交
6284 6285 6286 6287 6288
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6289 6290 6291
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6292
                                :attr:`out_shape` and :attr:`scale` specifying
6293 6294 6295 6296 6297 6298 6299
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6300 6301
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6302 6303 6304

    Returns:
        ${out_comment}.
6305 6306 6307 6308 6309

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6310 6311
    """

6312
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6313 6314 6315 6316


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6317 6318 6319
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6320 6321 6322 6323 6324 6325 6326
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6327
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6328

6329
    Returns:
Q
update  
qiaolongfei 已提交
6330
        Variable: The output is a 4-D tensor of the shape
6331
        (num_batches, channls, out_h, out_w).
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6342 6343 6344
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6345 6346 6347
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6348 6349
def gather(input, index):
    """
Q
qiaolongfei 已提交
6350 6351
    **Gather Layer**

6352
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6353 6354 6355 6356
    of X indexed by `index` and concatenate them together.

    .. math::

6357
        Out = X[Index]
W
whs 已提交
6358 6359 6360 6361 6362 6363 6364


    .. code-block:: text


                Given:

6365 6366
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6377
        input (Variable): The source input with rank>=1.
W
whs 已提交
6378 6379 6380 6381 6382 6383
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6384

W
whs 已提交
6385 6386 6387 6388 6389 6390
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6391
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6392 6393 6394 6395 6396 6397 6398 6399
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6431
    out = helper.create_variable_for_type_inference(dtype)
6432 6433 6434 6435 6436 6437 6438 6439 6440
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6491
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6492 6493 6494 6495 6496 6497 6498 6499 6500
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6514

6515 6516 6517
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6518
    """
F
stash  
fengjiayi 已提交
6519
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6520
    dtype = x.dtype
X
Xin Pan 已提交
6521
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6522
    if seed is None:
6523
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6524
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6525
    if isinstance(seed, int):
F
fengjiayi 已提交
6526 6527 6528 6529 6530
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6531 6532 6533 6534
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6535
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6536 6537
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6538 6539
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6540
    return out
W
whs 已提交
6541 6542


6543
def log(x, name=None):
W
wanghaoshuang 已提交
6544 6545 6546 6547 6548
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6549
        Out = \\ln(x)
W
wanghaoshuang 已提交
6550 6551

    Args:
6552
        x (Variable): Input tensor.
6553 6554
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6555 6556 6557 6558 6559 6560 6561 6562

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6563
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6564 6565
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6566
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6567
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6568
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6569 6570 6571
    return out


6572
def relu(x, name=None):
W
wanghaoshuang 已提交
6573 6574
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6575
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6576 6577 6578 6579
    the tensor elementwise.

    .. math::

6580
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6581 6582

    Args:
6583
        x (Variable): The input tensor.
6584 6585
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6586 6587 6588 6589 6590 6591 6592 6593

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6594
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6595 6596
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6597
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6598
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6599
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6600
    return out
6601 6602


C
chengduo 已提交
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6644 6645 6646
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6647 6648 6649 6650
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6651
    .. math::
6652 6653

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6654

6655
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6656 6657 6658 6659 6660
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6661
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6662
                           Its shape should be the same as input.
6663
        num_classes (int): The possible number of labels.
W
whs 已提交
6664 6665 6666 6667

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6668
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6669 6670 6671 6672

    Examples:

        .. code-block:: python
6673

W
whs 已提交
6674 6675 6676 6677
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6678 6679 6680
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6681 6682
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6683 6684
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6685
        outputs={
W
whs 已提交
6686 6687 6688
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6689 6690 6691
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
6760
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
6761 6762 6763 6764 6765

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6766
            isinstance(shape, Variable)):
6767 6768 6769 6770 6771
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6772
    out = helper.create_variable_for_type_inference(x.dtype)
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6790 6791


W
whs 已提交
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6809

W
whs 已提交
6810
              out_shape = [2, 3, 5, 5]
6811

W
whs 已提交
6812
          Step 1:
6813

W
whs 已提交
6814 6815 6816
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6817

W
whs 已提交
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6888
            isinstance(out_shape, Variable)):
W
whs 已提交
6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6910 6911 6912 6913 6914 6915 6916 6917
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6918

6919 6920
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6921

6922 6923 6924 6925
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6926

6927 6928 6929 6930 6931
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6932 6933 6934

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6970
    out = helper.create_variable_for_type_inference("float32")
6971 6972 6973 6974 6975 6976 6977 6978

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6979 6980


M
minqiyang 已提交
6981 6982
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6983
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6984
    which compares left score and right score passed in.
M
minqiyang 已提交
6985
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6986 6987 6988 6989 6990 6991

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6992
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6993 6994
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6995
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6996 6997 6998
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6999
       Variable: The ranking loss.
M
minqiyang 已提交
7000
    Raises:
M
minqiyang 已提交
7001
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7002 7003 7004 7005 7006 7007 7008
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7009
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7010 7011 7012 7013 7014 7015
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7016 7017
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
7041
        .. code-block:: text
W
whs 已提交
7042

7043
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7044

7045 7046
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7047

7048
	      Case 0:
M
minqiyang 已提交
7049

7050 7051 7052
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7053

7054 7055 7056
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7057

7058
	      Case 1:
M
minqiyang 已提交
7059

7060 7061
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7062

7063 7064 7065
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7066

7067
	      Case 2:
M
minqiyang 已提交
7068

7069 7070
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7071

7072 7073 7074
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7075 7076


W
whs 已提交
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7103
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7130 7131 7132 7133 7134

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7135 7136
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7137 7138
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7139
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7160 7161 7162 7163 7164

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7165 7166
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7167 7168
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7169
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7190 7191 7192 7193 7194

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7195 7196
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7197 7198
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7199
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7221 7222 7223 7224 7225

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7226
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7227
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7228 7229
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7230
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7253 7254 7255 7256 7257

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7258 7259
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7260 7261
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7262
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7284 7285 7286 7287 7288

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7289 7290
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7291 7292
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7293
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7294 7295 7296 7297 7298 7299 7300 7301
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7302 7303 7304 7305
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7306
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7307 7308 7309

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7310
        param_attr(ParamAttr|None): The parameter attribute for the learnable
7311
          weight (alpha).
J
jerrywgz 已提交
7312
        mode (string): The mode for weight sharing. It supports all, channel
7313 7314 7315
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7316
        name(str|None): A name for this layer(optional). If set None, the layer
7317
          will be named automatically.
J
jerrywgz 已提交
7318 7319 7320 7321 7322 7323 7324 7325

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7326
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7340
        attr=helper.param_attr,
J
jerrywgz 已提交
7341 7342 7343 7344
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7345
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7346 7347 7348 7349 7350 7351 7352 7353 7354
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7355 7356 7357 7358 7359 7360 7361 7362 7363 7364
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7365
    Returns:
7366
        output(${out_type}): ${out_comment}
7367 7368 7369 7370 7371 7372 7373

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7374 7375
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7376
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7395
    Returns:
7396
        output(${out_type}): ${out_comment}
7397 7398 7399 7400 7401 7402 7403

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7404 7405
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7406
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7424
    Returns:
7425
        output(${out_type}): ${out_comment}
7426 7427 7428 7429 7430 7431 7432

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7433 7434
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7435
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7436 7437 7438 7439 7440 7441 7442 7443
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7457

7458 7459 7460 7461 7462 7463 7464 7465 7466 7467
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7468 7469
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7485
        ValueError: If axis is not in range [0, rank(x)].
7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7502 7503
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7504
    helper.append_op(
7505
        type='flatten2',
7506
        inputs={"X": x},
7507 7508
        outputs={'Out': out,
                 'XShape': x_shape},
7509 7510
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7511 7512


C
chenweihang 已提交
7513
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7514
    """
C
chenweihang 已提交
7515
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7516
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7517 7518
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7519

C
chenweihang 已提交
7520 7521 7522 7523
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7524
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7525 7526 7527 7528 7529 7530
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7531
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7532 7533 7534
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7535 7536 7537
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7549 7550
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7551 7552 7553 7554 7555 7556
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7557
    return out
7558

7559

S
sneaxiy 已提交
7560 7561 7562 7563 7564 7565 7566 7567 7568
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7569

S
sneaxiy 已提交
7570
    .. math::
7571

S
sneaxiy 已提交
7572 7573 7574
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7575
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7576 7577 7578 7579
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7580 7581 7582
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7583 7584
    Returns:
        Variable: The output sequence mask.
7585

S
sneaxiy 已提交
7586 7587
    """

Q
qingqing01 已提交
7588
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7589
    if name is None:
X
Xin Pan 已提交
7590
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7591
    else:
X
Xin Pan 已提交
7592
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7593

Q
qingqing01 已提交
7594 7595 7596
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7597 7598
        outputs={'Y': out},
        attrs={
7599
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7600 7601 7602
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7603 7604


X
Xin Pan 已提交
7605
def stack(x, axis=0):
S
sneaxiy 已提交
7606 7607 7608 7609
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7610 7611 7612 7613 7614 7615 7616

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7617
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7618
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7619 7620

    Args:
7621
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7622
        axis (int|None): The axis along which all inputs are stacked.
7623

S
sneaxiy 已提交
7624 7625
    Returns:
        Variable: The stacked variable.
7626

S
sneaxiy 已提交
7627 7628
    """

X
Xin Pan 已提交
7629 7630 7631 7632 7633 7634
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7635
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7636
    helper.append_op(
S
sneaxiy 已提交
7637 7638
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7639

X
Xin Pan 已提交
7640
    return out
D
dzhwinter 已提交
7641 7642 7643 7644 7645 7646 7647


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7648

D
dzhwinter 已提交
7649 7650 7651
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7652
    raised.
D
dzhwinter 已提交
7653 7654

    Args:
M
minqiyang 已提交
7655
        x (Variable): Input variable.
D
dzhwinter 已提交
7656 7657
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7658

D
dzhwinter 已提交
7659 7660
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7661

D
dzhwinter 已提交
7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7673
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7674 7675 7676 7677 7678 7679 7680 7681

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7694

W
whs 已提交
7695 7696 7697 7698
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7699

W
whs 已提交
7700
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7701

W
whs 已提交
7702
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7703

W
whs 已提交
7704 7705 7706 7707
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7708

W
whs 已提交
7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7725
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7726 7727 7728 7729 7730 7731
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7732 7733


G
fix  
gongweibao 已提交
7734 7735 7736
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7737
@templatedoc()
G
fix  
gongweibao 已提交
7738 7739 7740 7741 7742 7743 7744 7745 7746
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7747
    ${comment}
G
fix  
gongweibao 已提交
7748 7749

    Args:
G
gongweibao 已提交
7750 7751 7752
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7753
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7754 7755 7756
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7757 7758
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7759
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7760

7761 7762 7763 7764 7765
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7766 7767 7768
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7769
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7786 7787


G
gongweibao 已提交
7788
@templatedoc()
X
Xin Pan 已提交
7789
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7790
    """
G
gongweibao 已提交
7791
    ${comment}
G
fix  
gongweibao 已提交
7792 7793

    Args:
G
gongweibao 已提交
7794 7795 7796 7797
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7798 7799 7800
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7801
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7802

7803 7804 7805 7806
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7807 7808 7809
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7810
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7821
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7822 7823 7824 7825 7826
        })

    return out


G
gongweibao 已提交
7827
@templatedoc()
G
fix  
gongweibao 已提交
7828
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7829
    """
G
gongweibao 已提交
7830
    ${comment}
G
fix  
gongweibao 已提交
7831 7832

    Args:
G
gongweibao 已提交
7833 7834 7835 7836
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7837
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7838 7839

    Returns:
G
gongweibao 已提交
7840
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7841

7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7852 7853 7854
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7855
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7867
@templatedoc()
G
fix  
gongweibao 已提交
7868 7869 7870 7871 7872 7873 7874 7875 7876
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7877
    ${comment}
G
fix  
gongweibao 已提交
7878 7879

    Args:
G
gongweibao 已提交
7880 7881
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7882
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7883 7884 7885 7886
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7887
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7888 7889

    Returns:
G
gongweibao 已提交
7890
        out (Variable): ${out_comment}
7891 7892 7893 7894 7895 7896 7897 7898

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7899 7900 7901
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7902
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7921
@templatedoc()
X
Xin Pan 已提交
7922
def sum(x):
G
fix  
gongweibao 已提交
7923
    """
G
gongweibao 已提交
7924
    ${comment}
G
fix  
gongweibao 已提交
7925 7926

    Args:
G
gongweibao 已提交
7927
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7928 7929

    Returns:
G
gongweibao 已提交
7930
        out (Variable): ${out_comment}
7931 7932 7933 7934 7935 7936

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
7937 7938 7939
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7940 7941
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7942 7943 7944 7945
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7946
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7947 7948 7949 7950

    return out


G
gongweibao 已提交
7951
@templatedoc()
G
fix  
gongweibao 已提交
7952 7953
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7954
    ${comment}
G
fix  
gongweibao 已提交
7955 7956

    Args:
G
gongweibao 已提交
7957 7958 7959 7960
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7961 7962

    Returns:
G
gongweibao 已提交
7963
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7964

7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
7976 7977 7978
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7979 7980
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7992
@templatedoc()
G
fix  
gongweibao 已提交
7993 7994
def shape(input):
    """
G
gongweibao 已提交
7995
    ${comment}
G
fix  
gongweibao 已提交
7996 7997

    Args:
G
gongweibao 已提交
7998
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7999 8000

    Returns:
G
gongweibao 已提交
8001
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8002

8003 8004 8005 8006 8007 8008
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8009 8010 8011
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8012 8013
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8014
    helper.append_op(
G
fix  
gongweibao 已提交
8015
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8016 8017

    return out
G
merge  
gongweibao 已提交
8018 8019


S
sneaxiy 已提交
8020 8021 8022 8023 8024 8025 8026 8027
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8028 8029
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8030
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8031 8032 8033
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8034

S
sneaxiy 已提交
8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8046
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8047 8048 8049 8050 8051 8052 8053 8054
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8055
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8056
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8057 8058 8059 8060 8061 8062

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8063
    if name is None:
X
Xin Pan 已提交
8064
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8065 8066 8067
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8068 8069 8070 8071 8072 8073 8074 8075 8076 8077

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8078
    return helper.append_activation(out)
S
sneaxiy 已提交
8079 8080


X
Xin Pan 已提交
8081
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8082 8083 8084
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8085
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8086 8087 8088
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8089
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8090 8091 8092
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8093
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8094 8095 8096
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8097
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8098 8099 8100
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8101
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8102 8103 8104
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8105
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8117 8118
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8119
        ])
M
minqiyang 已提交
8120 8121


8122
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8123 8124
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8125 8126
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8127 8128 8129

    if out is None:
        if name is None:
X
Xin Pan 已提交
8130
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8146
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8158 8159 8160 8161 8162 8163 8164 8165 8166

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8167 8168 8169 8170 8171 8172 8173
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8174
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8186 8187 8188 8189 8190 8191 8192 8193 8194

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8195 8196 8197 8198 8199 8200 8201
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8202
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8214 8215 8216 8217 8218 8219 8220 8221 8222

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8223 8224 8225 8226 8227 8228 8229
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8230
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8231 8232 8233 8234 8235 8236 8237 8238 8239 8240
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8241 8242 8243 8244 8245 8246 8247

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8248 8249 8250 8251
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8267 8268 8269 8270 8271 8272 8273

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8274 8275 8276 8277 8278
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8279 8280 8281 8282
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8306 8307 8308 8309 8310 8311 8312

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8313 8314 8315 8316 8317
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8318 8319 8320 8321
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8322 8323 8324 8325 8326 8327 8328 8329

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8348
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8349 8350 8351 8352 8353 8354 8355 8356 8357 8358
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduozh 已提交
8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8401
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8402 8403 8404 8405 8406 8407 8408 8409 8410
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8411 8412
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8435
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8465
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8466 8467 8468 8469 8470 8471 8472 8473 8474 8475
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8476 8477


J
JiabinYang 已提交
8478
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8479
    """
J
JiabinYang 已提交
8480
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8481 8482 8483

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8484
    The attr blocksize indicates the input block size.
8485 8486

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8487
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8488 8489

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8490
    (but keeping all data)
J
JiabinYang 已提交
8491

J
JiabinYang 已提交
8492
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8493
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8494 8495 8496 8497 8498
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8499
    Args:
J
JiabinYang 已提交
8500
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8501
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8502 8503

    Returns:
J
JiabinYang 已提交
8504
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8505 8506

    Raises:
J
JiabinYang 已提交
8507
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8508 8509 8510 8511 8512 8513

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8514
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8515
                x=data, blocksize=2)
J
JiabinYang 已提交
8516 8517
    """

J
JiabinYang 已提交
8518
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8519

J
JiabinYang 已提交
8520 8521
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8522 8523

    if name is None:
J
JiabinYang 已提交
8524 8525
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8526 8527 8528 8529 8530
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8531
        type="space_to_depth",
J
JiabinYang 已提交
8532
        inputs={"X": x},
J
JiabinYang 已提交
8533
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8534
        outputs={"Out": out})
J
JiabinYang 已提交
8535 8536
    return out

J
JiabinYang 已提交
8537

S
sneaxiy 已提交
8538 8539
@templatedoc()
def sequence_reverse(x, name=None):
8540
    """
S
sneaxiy 已提交
8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8552
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8553 8554 8555 8556 8557 8558 8559 8560 8561 8562
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8563 8564


8565 8566 8567 8568 8569 8570
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8571

8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8591
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8604 8605


B
barrierye 已提交
8606
def similarity_focus(input, axis, indexes, name=None):
8607
    """
B
barrierye 已提交
8608
    SimilarityFocus Operator
B
barrierye 已提交
8609 8610

    Generate a similarity focus mask with the same shape of input using the following method:
8611 8612 8613
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8614
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8615 8616 8617 8618 8619 8620 8621
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8622
       each index.
B
barrierye 已提交
8623 8624 8625 8626
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8676
    Args:
8677
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8678
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8679
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8680
            1, 2 or 3.
B
barrierye 已提交
8681
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8682 8683

    Returns:
8684
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8685
            as the input.
8686

B
barrierye 已提交
8687 8688 8689
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8690 8691
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8704 8705 8706 8707 8708
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8709 8710 8711 8712 8713 8714 8715
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8716 8717


M
minqiyang 已提交
8718 8719
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8720 8721
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8722 8723
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8762
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8763
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8764 8765 8766 8767 8768 8769 8770 8771 8772

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8773 8774
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8775 8776
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8777 8778 8779 8780 8781 8782 8783
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8784 8785


D
dengkaipeng 已提交
8786
@templatedoc()
8787 8788
def grid_sampler(x, grid, name=None):
    """
8789
    This operation samples input X by using bilinear interpolation based on
8790
    flow field grid, which is usually gennerated by affine_grid. The grid of
8791 8792 8793 8794
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8795
    interpolation value of 4 nearest corner points.
8796 8797 8798 8799 8800 8801 8802 8803

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8804
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8834 8835

    Args:
8836 8837 8838
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8839 8840

    Returns:
8841
        out(Variable): Output of shape [N, C, H, W] data samples input X
8842 8843 8844 8845 8846 8847 8848 8849 8850
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8851 8852 8853 8854 8855 8856 8857 8858 8859
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8860
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8861 8862
    ipts = {'X': x, 'Grid': grid}

8863
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8864 8865 8866
    return out


G
gmcather 已提交
8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8961 8962 8963 8964 8965 8966 8967 8968 8969 8970


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8971
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8972

Q
Qiao Longfei 已提交
8973
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8974 8975 8976
    For example:

    .. math::
8977
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8978

Q
Qiao Longfei 已提交
8979
    In this formula:
8980 8981
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8982
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8983
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8984 8985 8986
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8987 8988
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8989 8990 8991
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8992
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8993
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8994
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8995 8996 8997 8998
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8999
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9000 9001 9002 9003

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9004
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9005 9006
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9007
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9008 9009 9010 9011

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9012
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduozh 已提交
9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
M
minqiyang 已提交
9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091


def huber_loss(input, label, delta):
    """
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
     When the difference between input and label is large than delta
    .. math::
         huber\_loss = delta * (label - input) - 0.5 * delta * delta
     When the difference between input and label is less than delta
    .. math::
         huber\_loss = 0.5 * (label - input) * (label - input)
    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
        delta (float): The parameter of huber loss, which controls
                       the range of outliers
    Returns:
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
    Examples:
        .. code-block:: python
             predictions = fluid.layers.softmax(x)
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
    """
    helper = LayerHelper('huber_loss', **locals())
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out